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ABSTRACT

Design and analysis of multiple input autopilots using sliding modes in order to

achieve accurate horizontal and vertical plane control of an autonomous underwater

vehicle over a wide variation of speeds is presented. The simulated vehicle is

equipped with two (fore and aft) sets of dive planes and two sets of rudders. In

addition, two vertical and two horizontal thrusters are provided for control during low

speed or hovering operations. The entire range of vehicle speeds from zero speed

hovering to full speed ahead is divided into regions depending on control efficiency.

Thrusters are used for low speed hovering, control surfaces for high speed cruising,

and a combination of thrusters and control surfaces for transition speeds. Linear

quadratic regulator optimal control techniques coupled with the robustness properties

of sliding mode control are utilized to provide the necessary control reversal which

occurs during the transition from cruise to hover mode. Constant disturbances arising

from underwater currents are effectively compensated resulting in accurate path

keeping. As a consequence of the multiple input control methodology developed in

this work, it is shown that both path and orientation accuracy can be achieved in

moderate cross current environments. Finally, reduced order observers are designed

in order to account for sensor absence or malfunction.
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I. INTRODUCTION

A. GENERAL

The research area of automatic control of autonomous underwater vehicles, or

AUVs, is of particular interest to the Navy and private industry. AUVs are capable

of a variety of unclassified missions including ASW, decoy, survey, reconnaissance,

and ocean engineering work. The attractiveness of small unmanned vehicles is

increasing due to the escalating capital and operational costs of manned submarines.

The dynamics of underwater vehicles are described by highly nonlinear systems

of equations with uncertain coefficients and disturbances that are difficult to measure.

An automatic controller for an AUV must satisfy two conflicting requirements: First,

it must be sophisticated enough to perform its mission in an open ocean environment

with ever-changing vehicle/environment interactions. Second, it must be simple

enough to achieve real-time control without nonessential computational delays.

Sliding mode control theory yields a design that fulfills the above requirements.

It provides accurate control of nonlinear systems despite unmodeled system dynamics

and disturbances. Furthermore, a sliding mode controller is easy to design and

implement. A very effective pseudo-linear sliding mode controller can be developed

from the linearized equations of motion for an underwater vehicle.

The sliding mode control concept was first introduced by Utkin [Ref. 1] and

recently developed by Slotine [Ref. 2]. At the U.S. Naval Postgraduate School (NPS),



the sliding mode theory has been applied by several past students for control of an

AUV, e.g., Lienard [Ref. 3] and Joo-No Sur [Ref. 4]. However, past students have

approached the problem of AUV control as a single input/single output (SISO)

system. So far, satisfactory control has been realized with this method, but improved

control should be achievable by applying multiple input/multiple output (MIMO)

sliding mode control theory. In fact, it is imperative to treat an AUV as a MIMO

system to be able to control it through the entire speed range from hovering at zero

speed to maximum speed.

B. AIM OF THIS STUDY

The aim of this study is to develop a robust MIMO sliding mode controller that

will control speed, heading, and depth through a wide range of operational speeds

even in the presence of underwater currents.

An AUV has been recently cunstructed at NPS and is currently being outfitted.

The hydrodynamic coefficients of the NPS AUV are unknown, hence a surrogate

vehicle with known characteristics is needed to explore control theory. As in prior

AUV control theses at NPS, the Mark IX Swimmer Delivery Vehicle (SDV) will be

u, ilized.

The first step of this study is the development of the linear quadratic regulator

(LQR) optimal control technique for MIMO sliding mode controller design. This

method is utilized for the design of a depth controller. In the vertical plane, the full

nonlinear equations of motion are simplified until they become decoupled from the

2



horizontal plane equations. The MIMO sliding mode depth controller is designed

and simulated based on these simplified nonlinear equations.

The LOR method is then utilized for the design of a line-of-sight (LOS) steering

* controller and then a cross-track-error (CTE) steering controller. These controllers

are also designed and simulated based on simplified nonlinear equations of motion.

The diving and steering (first the LOS and then the CTE) controllers are then

combined into a control package. This package is then used to control the AUV

utilizing the full nonlinear equations of motion.

Finally, three dimensional path keeping is developed. This iil,thou usch two

cross-track-error controllers to allow the AUV to follow a straight line path in thr'e

dimensional space.

In all cases, reduced order observers are designed to estimate states that are not

directly measurable. Additionally, the speed controller developed by Lienard [Ref. 31

was utilized in all cases.

C. THESIS OUTLINE

In Chapter II, the LQR method of MIMO sliding mode controller design is

developed. Chapter III discusses the diving controller design and simulation.

Chapter IV is concerned with the LOS steering controller. In Chapter V, the CTE

steering controller is developed. Simulation of the AUV with the full nonlinear

equations of motion and the combined control package is achieved in Chapter VI.

3



In addition, three dimensional path keeping is developed and simulated in Chapter

VI. Finally, Chapter VII contains the conclusions and recommendations.

4



II. THEORY OF MIMO SLIDING MODE CONTROL

A. INTRODUCTION

This chapter is devoted to the theory of MIMO sliding mode control. A more

thorough discussion of sliding mode theory can be found in [Ref. 1] and [Ref. 2]. In

this chapter, sliding mode theory is reviewed with emphasis on the differences due

to MIMO applications. Then, general procedures for designing a sliding mode

MIMO controller are delineated.

B. REVIEW OF SLIDING MODE THEORY

1. Overview of MIMO Sliding Mode Control Equations

The controller design process begins with the linearized equations of

motion written in the standard state space representation as follows:

x = Ax +Bu (2.1)

where, x - R', state vector

u E R', control input vector

A e R"', state matrix

B E Rnx', control distribution matrix

n, number of states

m, number of inputs

5



The sliding mode control laws, u, for the system of (2.1) are of the form:

U + U+ (2.2)

As can be seen in (2.2), the control laws are composed of two parts. It will be seen

later that the first, fi, are linear feedback laws based on the nominal linearized model

(2.1). The second, U-, are nonlinear feedbacks with their signs switching between plus

and minus according to the location of the system with respect to the sliding surfaces:

a (X) = STx = 0 (2.3)

where, S F R" '

Determination of S will determine the sliding surfaces uniquely.

The control laws (2.2) must be able to drive the system (2.1) onto the

sliding surfaces (2.3) and the nominal operation point for an arbitrary choice of initial

conditions. It will be seen later that the dimension of the m sliding surfaces must be

one less than the dimension of the state space since U- has to change sign as the

system crosses a(x) = 0. Detailed development of ti and i is in the sections that

follow. [Ref. 5]

6



2. Liapunov Function

By defining the Liapunov function:

V(X) = = I..(~ + a,+ .. + am(.4
2 2 -

asymptotic stability of (2.3) is guaranteed provided J7(x) is a negative definite

function:

IA I 11 + a2 )+ *+O am &M 0 (2.5)

This is true if:

0< 0

(2.6)

which can be written in the form:

&I= -i sign(a1 )

a,= -ri 2 sign (a2 )
(2.7)

am= -rn sigz(0a)

7



3. Determination of the Control Laws

Using (2.1) and (2.3) in (2.7) results in:

ST(Ax + Bu) -k (2.8)

r7- sign (al)

r7 ; sign (an)

where, k.

m Sign (o m)

Solving for u:

u = (STB) - STAX - (STB) - k (2.9)

which is the same form as (2.2) with:

f,= _ (STB) - 1 STAx (2.10)

= (STB)- 'k (2.11)

When on the sliding surfaces a(x) = 0, the control laws become u = fu.

Substituting (2.10) into the system (2.1) yields:

.i [AB(ST B)-I ST Ax (2.12)

which can be written:

I = (A - Bk)x (2.13)

8



where, k (STB) - sTA

The gain matrix, k, can be found from standard pole placement or LQR

methods. The closed loop dynamics matrix:

A = A -Bk (2.14)
C

has eigenvalues specified for desirable response. Additionally, m poles of A, must be

zero which is consistent with the decomposition (2.9).

The linear feedbacks ,i provide the desired dynamics on the sliding

surfaces only. Therefore, fi has no effect for the m excursions off the sliding surfaces

a(x) = 0.

Conversely, the nonlinear feedbacks U- only drive the system onto the

sliding surfaces and provide no control action on the sliding surfaces. The one

requirement for this action is the gains r~i2 have to be chosen large enough so u- can

provide the required robustness due to momentary disturbances and unmodeled

dynamics without any compromise in stability.

4. Determination of the Sliding Surfaces

With Ac and k specified, S can be determined as follows. Rearranging the

expression for k in (2.13) and using the expression for A c in (2.14) yields:

ST AC = 0 (2.15)

9



The existence of m linearly independent nontrivial solutions of (2.15) is guaranteed

if the closed loop dynamic matrix has rank deficiency m, i.e., if A. has m poles at the

origin. This is consistent with the decomposition (2.9). The linear feedbacksfi

provide the desired dynamics on the m sliding surfaces only. Therefore, fi has no

effect in the directions that are perpendicular to the sliding planes. However, it is

not always possible to compute S from (2.15) directly since the existence of m left

eigenvectors of A. corresponding to the multiplicity m zero eigenvalue is not always

guaranteed. Thus, another method is required for MIMO sliding mode controller

design. This leads us to a method proposed by Utkin.

C. ALTERNATIVE APPROACH

In [Ref. 6], Utkin proposed an alternative method of sliding mode controller

design especially for MIMO applications. This method requires a transformation of

the state vector and associated matrices.

1. Transformations

a. Transformation Matrix

First, an orthogonal nxn transformation matrix, T, is found such that:

TB [:IB1] (2.16)

where, B1 e Rmxm

0 e R(n'm)xm
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QR factorization which is available on software programs such as Matrix-x (Copyright

1989 by Integrated Systems Inc.) can be used to determine T. After QR

factorization, the B matrix is transformed to:

where Q is orthogonal and R is upper triangular. Rearranging (2.17) yields:

QTrB =[R (2.18)

where then, T = QT

B 1 = R

Note that the transformation need not be applied if the B matrix is already of the

desired form of (2.16). This was found to be the situation for all cases of MIMO

control of the SDV.

Ii. Transformed Equations of Motion

After the transformation, the new states are:

y = Tx (2.19)

and the system (2.1) becomes:

= TATTy + TBu (2.20)
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which can be decomposed into the form:

Yl = Ally, + A 1 2 y2 + B1 U (2.21)

Y2 = A21Y1 + A22Y2  
(2.22)

where, Y, c R '

Y 2 F R(n-m)

All e: R m x m

A12 F- R m x(n -m )

A 21 e R(n-m) xm

A 22 e R(n-m)x(ntm)

B1 E R" x

c. Transformed Sliding Surfaces

Using the transformation of the states (2.19) in the equation of the

sliding surfaces (2.3) results in:

a(y) = c'y = 0 (2.23)

where, C = TS

Equation (2.23) can be decomposed to:

o(y) = C1ty 1 + C2TY2  0 (2.24)

where, C1T E Rmxr
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C 2T R mx(n-m)

0 Rm

Without loss of generality, the matrix C1 can be set equal to the identity matrix I to

simplify the equations for the sliding surfaces.

d. Transformed Liapunov Function

As before, a Liapunov function is defined to ensure asymptotically

stable sliding surfaces. In transformed states, the Liapunov function is:

V(y) = l[a(y)]2 (2.25)

which again leads to (2.7).

e. Transformed Control Laws

Substituting (2.24) into (2.7) leads to the following expression:

Y1 + C2TY2 = -k, (2.26)

Substituting (2.21) and (2.22) into (2.26) and solving for u gives:

u = -B,-'[(A,,+ C2TA 21)Y1 + (A12+ C 2TA 22)YJ - B-' k, (2.27)

Again, u has the form of (2.2) with:

= -BI 1 [(A 1I+ C 2TA 2 1)Y1 + (A 12 + C2 TA 2 2)Y21 (2.28)

= -B 1-' ke (2.29)
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2. Transformed Equations on the Sliding Surfaces

When the system is on the sliding surfaces, the control laws become,

u = fi, and the sliding surfaces after solving for Yi are:

Y1 = -C 2T Y2  (2.30)

Using (2.28) and (2.30) in (2.21), the first set of system equations for Yj on the

sliding surfaces reduces to:

_c2T 2 = -C T(A 21y 1 + A22y 2) (2.31)

This is nothing more than a linear combination of the second set of system equations

(2.22) for Y2! Thus, there are only (n-m) independent equations on the sliding

surfaces which gives m poles at the origin as before. The (n-m) independent

equations on the sliding surfaces are:

Y2 = (An - A 2 1 C2T)Y 2  (2.32)

3. LQR Method for Determination of the Sliding Surfaces

In [Ref. 6], Utkin discusses pole placement and LQR methods for

determining C2T. Both methods have been utilized for the control of the SDV during

this study. The theory of pole placement is well known and will not be restated here.

For the LQR method, it is desired to minimize the quadratic performance

index:
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1=~xTQ xd (~T TQ TT;)y dt (2.33)

where, Q _> 0

QT = Q

to = time sliding mode begins

Partition the transformed weighting matrix such that:

TQ [Q 12 (2.34)

TQ21 Q22J

Using the partitioned matrix (2.34) in (2.33) yields:

tol Q11Y 2 + 2 Q21YI + y  Q
12
y
2  (2.35)

+ Y2T Q22Y2)dt

or:

i o(Y2 TQ Y2 
+ vTQV)dt (2.36)

where, Q" Q22 - Q21 Q1 1 Q12

A* -=A22 - A21 Q11' Q12

v -Y1 + Q 1 Q12Yi
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Equation (2.36) is now a recognizable form for applying the LQR technique. One

more step remains; the new definitions need to be applied to the system which is on

the sliding surfaces. After these substitutions (2.32) converts to:

2 = A*y 2 + A 21 v (2.37)

The alterations are complete and the problem is now to minimize (2.36)

subject to (2.37). The Hamiltonian for this problem is:

H=pT(A y 2 + A21 V)- (lY2 T Y2 + PTQ v ) (2.38)

and the algebraic Riccati equation is:

A*T k + kA - kA21Q11- A 21"T k+Q* = 0 (2.39)

which results in the solution:

v = -Q 1
-1A21Tk y 2  (2.40)

Again the new definitions from (2.36) are applied but in reverse to return

to the original matrix variables. This produces the desired result:

C2
T = Qn- 1(Q12 +A21 Tk) (2.41)
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4. Determination of the Control Laws

After determining C 2T by pole placement or by the LQR method above,

calculation of the control laws is trivial by substitution into (2.28) and (2.29).

D. CONTROL OF CHATTERING

Although sliding mode is a robust means of control in the presence of

parameter variations and input disturbances, it has an inherent chattering problem.

This is caused by the discontinuity of the nonlinear feedbacks, i. As stated earlier,

these are switching terms with their signs switching between plus and minus according

to the location of the system with respect to the sliding surfaces, such -s:

sign( 1) ,i > 0  (2.42)

-1 , i < 0

The chattering problem is eliminated by introducing small boundary layers of

thickness 0i around each sliding surface. Due to the sliding surfaces being defined

via a Liapunov function, the system is guaranteed to move into the boundary layers

towards the sliding surfaces. Unfortunately, the dynamics of the system trajectory

inside the boundary layers are only an approximation to the desired dynamics on the

sliding surfaces. The advantage of the scheme is that the trajectory will not chatter

close to the sliding surfaces.
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The scheme is carried out by defining a saturation function in place of sign(ai):

+1 ; Oi > Oi

a'i. (2.43)
satsgn(i) -' ; -Oi < ai < i

-1; a< -0i

Theoretically, each sliding surface can have a different boundary layer thickness;

however, during this study the same boundary layer thickness was used for all sliding

surfaces of a given system.

E. COMMENTS

Methods for designing a MIMO sliding mode controller have been discussed.

To review Utkin's method, the sliding surfaces can be determined by pole placement

or by the LQR technique. Both of these methods, in the most general case, require

a transformation of the states. As previously discussed, in this study the B matrix was

always in the correct form and transformation was never needed.

Although pole placement has the advantage of direct placement of the sliding

surface poles, its disadvantage is a lack of direct control over the control

methodology, i.e., with what hierarchy will the states be minimized. As will be seen

later, this can be of great importance for AUV control and is the motivation for using

the more complex LQR method when conditions warrant.
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III. MIMO SLIDING MODE CONTROL OF THE AUV IN THE DIVE PLANE

A. NONLINEAR GOVERNING EQUATIONS IN THE DIVE PLANE

1. Modifications to the SDV Equations of Motion

As stated in Chapter I, the Mark IX SDV has been used in this thesis for

theoretical study of AUV dynamics; however, the SDV has several dissimilarities with

the newly constructed NPS AUV. First, the SDV has a third propeller mounted

underneath for surface operations. Second, the SDV has no vertical or horizontal

thrusters for hovering or low speed operations. Finally, the SDV has stern rudders

only. [Ref. 7]

The SDV model from [Ref. 7] was modified to approximate the AUV

geometry as closely as possible. First, in the equations of motion the terms for the

"extra" third propeller were dropped. Second, for diving operations vertical tunnel

thrusters were added to the model. Finally, a set of bow rudders were added to the

model for MIMO steering control. Steering will be discussed in Chapter IV.

a. Tunnel Thrusters

Several decisions had to be made in adding tunnel thrusters to the

SDV model. Commensurate with the size of the SDV, it was decided that the two

vertical tunnel thrusters would have a maximum thrust of 5 lbf each, and they would

be located symmetrically on each side of the origin of the body axis coordinate system

a longitudinal distance of 6.7 ft. It was also assumed that current would be used to
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control the thrusters where +20 amperes would correspond to the maximum thrust

of 5 lbf in the positive heave direction (downward). The relationship between

thruster current and the resultant thrust was assumed to be linear [Ref. 8].

The thrusters were assumed to be infinitely responsive, i.e., zero

response time. This is a realistic assumption for small thrusters.

The effect of vehicle surge velocity on resultant thrust is unknown for

very small tunnel thrusters and is the topic of future studies at NPS. From studies

of thrusters in general, it is known that thrust will decrease with increasing surge

velocity [Ref. 9]. It was assumed during this study that the relationship was linear

with a thrust degradation of 20% at maximum surge velocity.

Additionally, the effect of the thrusters on the surge velocity is also

unknown and was unmodeled in this study.

2. Identification of Symbols

The six degree of freedom equations of motion for an underwater vehicle

are usually described using a body fixed coordinate system and an inertial reference

frame. Vehicle position is expressed in Cartesian coordinates x,y, and z. Orientation

of the coordinate system is expressed in Euler angles 0, 0, and *l. Hydrodynamic

force components along the body axes are expressed as X, Y, and Z. Hydrodynamic

moment components along the body axes are expressed as K, M, and N. Figure 8

of [Ref. 4] shows the positive directions of forces, moments, motions, and control

surface deflections. The definitions of the states, controls, and other variables are

listed in Tables 1, 2, and 3, respectively.
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Table 1. DEFINITION OF AUV STATES

STATE DEFINITION UNITS

u surge velocity ft/s

v sway velocity ft/s

w heave velocity ft/s

p roll rate rad/s

q pitch rate rad/s

r yaw rate rad/s

roll angle radians

L pitch angle radians

0, yaw angle radians

Table 2. DEFINITION OF AUV CONTROLS

CONTROL DEFINITION UNITS

6 br bow rudder angle radians
6 sr stern rudder angle radians

6 bp bow plane angle radians
6sp stern plane angle radians

Iby, vert bow thruster current amperes

IV vert stern thruster current amperes

N propeller speed rpm
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Table 3. DEFINITION OF ADDITIONAL VARIABLES

VARIABLE DEFINITION UNITS

W vehicle weight lbf

B buoyant force on vehicle lbf

x distance from the origin ft

b(x) vehicle beam at position x ft

h(x) vehicle height at position x ft

Xg, Y9, z9 location of CG ft

XB, YB, ZB location of CB ft

Ucjx) cross flow velocity at x ft/s

L vehicle length ft

p density of medium slugs/ft3

v kinematic viscos. of medium ft2/s

m vehicle mass slugs

IV moment of inertia slug-ft2

3. Assumptions

The following assumptions have also been made for the diving model:

* Vehicle motion is confined to the vertical plane:

(p, P, v, i, 0, *, r, f, 6 br, 6 sr = 0)

" The AUV is neutrally buoyant:

(W = B)

" The CB and CG are on the vehicle's centerline:

(Yg, YB = 0)
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* The AUV is restricted to the speed range:

(-6.0 ft/s :__ u :s +6.0 ft/s)

(-500 rpm s N -s +500 rpm)

* The planes have a restricted range of motion:

16br,  0.4 radians

16SP_ 0.4 radians

* Surge velocity can be assumed constant in the heave and pitch equations:

(a = 0)

These assumptions greatly simplify the governing nonlinear equations.

4. Resulting Equations

After all modifications and assumptions, the nonlinear governing equations

from [Ref. 7] simplify to:

* Normal (Heave) equation of motion

m(vi, -uq -xg -z gq 2 ) PL 4Z

+ 9 Zqq

P 3'
+-L (Z1, +Z4uq)

2

"2[Zw u W + U'(Zb bp + Z6 p6s)] (3.1)

_Pbow CDz b(x) (w -Xq)3

2Jstern UCf(x)

+ (0.25 - 0.008 3u)Ibv

+ (0.25 - 0.0083u)Is,
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* Pitch equation of motion

y4 - m[xg(t, -uq) -zgwq]
5k

+ _PL4(M/.f + M~uq)
2

+ EL[/U u2VOb + kuq
2 qp

(32.. O, ~b (x) (w - xq) 3  (3.2)

+ .+,°, rI. xa
Jtern Ulf (X)

- (Xg W -XBB) cosO

- (zgW- ZBB)sinO

- 6.7(0.25 - 0.0083 u)IbV

+ 6.7(0.25 - 0.0083u)sv

* Surge equation of motion

m(ti + wq -xgq 2 + Zg) =

2 L Xqqqq

+ 2EL [XLi +X.wq +uq(X, 6 +x 6

2 ' X q q bp b qsp s)

(3.3)
2 wLX' ,,. + U,,X'.6 , bp + X,, 6 ,,,SP)]

2
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" Kinematic equations

Sq (3.4)

z = w-usinO (3.5)

" Propulsion equations

X - 1J (3.6)Xprop =- CDo1r7 I rl I - 1] 36

C 0.00385 + 1.296x 10- 7 (R- 1.2x 107)2 (3.7)
DO e -

Re = uL ; Reynold's number (3.8)
V

u d (3.9)r7 =  -
U

Ud - 0.012 N ; desired surge velocity (3.10)

" Cross flow velocity equation

Uf(x) = I(w-xq)I (3.11)

B. CONTROL METHODOLOGY

Previous theses at NPS have attempted to control the AUV only at high speeds

in the dive plane, e.g., [Ref. 4]. Problems arise at low speeds with only planes as

control inputs. In fact, depth of the neutrally buoyant AUV cannot be controlled at

speeds less than approximately 1.0 ft/s because the hydrodynamic forces on the planes

become negligible. This control problem can be overcome by the addition of

thrusters; however, this poses new control problems. With two sets of planes and two

thrusters, the system now has four control inputs! The problem arises as to how
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these inputs should be utilized for efficient vehicle control. Figure 1 compares the

hydrodynamic forces produced by the planes and thrusters versus surge velocity.

Obviously, at very low speeds the planes are ot little use. At high speeds, the thrust

produced by the tunnel thrusters is negligible in comparison to the planes.

For efficient control, it was decided to use different control laws at different

surge velocities. The surge velocity u was partitioned into three distinct regions:

" Hover region: 0.00 u < 0.75 ft/s

" Transition region: 0.75 < u < 1.75 ft/s

" Cruise region: 1.75 < u s 6.00 ft/s

In the hover region, only thrusters are used for vehicle control. In the transition

region, thrusters and planes are used. Finally, in the cruise region planes are utilized.

Thus, there are unique control laws and sliding surfaces in each region.

The simplified nonlinear governing equations from the previous section are

linearized at the midpoint of each speed region, u = 0.375, 1.25, 3.875 ft/s, to obtain

the line.. zed state space representation of (2.1) for controller design. Due to the

complexity of the heave (3.1) and pitch (3.2) equations, a Fortran program was

written to assist in their solution. The program is named SDVDIVLINI.FOR (see

Appendix A). The program solves the heave and pitch equations for 0i and q.

Program output is expressed as two highly nonlinear equations:
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Figure 1. Forces Produced by Planes and Thrusters vs Surge Velocity
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d x(t) = M-f(x(t), u(t)) (3.12)

where, M a "mass" matrix

The heave and pitch equations are then linearized, as is kinematic equation (3.5).

With the inclusion of the linear kinematic definition (3.4), the resultant system has

the form of (2.1):

6W w bp

-- [.4 + [ SPb, (3.13)

The sliding surfaces and control laws of the AUV are then based on this linear

system.

C. CONTROL OF THE AUV IN THE HOVER REGION

1. State Space Equations

To reiterate, in the hover region, 0.00 < u < 0.75 ft/s, the planes are not

used and the nonlinear system is linearized at u = 0.375 ft/s to determine the sliding

surfaces and control laws. The resulting linear state space representation is:

" -0.0227 -0.0505 0.0251 0.0 w 0.00017 0.00014

= 0.0056 -0.0627 -0.0668 0.0 q -0.00005 0.00004 [Ibj3

0 0.0 1.0 0.0 0.0 0 0.0 0.0 [IV

1.0 0.0 -0.3750 0.0 z 0.0 0.0
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Note the B matrix has the required form of (2.16) and the transformation matrix T

discussed in Chapter II is not needed, or T can be thought of as the identity matrix.

Using Utkin's method of MIMO sliding mode controller design, (3.14) can

be expressed in the form of (2.21) and (2.22) with:

-0.0227 -0.0505 0.0251 0.0
All = 0.0056 -0.0627j A12 = [-0.0668 0.01

0.0 1.0 0.0 0.01

A21 - 1.0 0.0 A22 = -0.3750 0.0

= 0.00017 0.000141 (3.15)
-0.00005 0.00004J

y I= [w qjr y2= [0 Z]T  U = [I'by 'sT

The MIMO sliding mode controller will be based on this linear system.

2. Controller Design by Pole Placement

With pole placement, the first step is to place the poles of the system on

the sliding surfaces to determine C2T:

POLEPLACE{A 22 _ A21C2T} (3.16)

The reader is reminded that this method requires C 1T to be set equal to the 2x2

identity matrix as discussed in Chapter II.
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A problem arises because C 2T is a 2x2 matrix with four unknowns, while

(3.16) turns out to be a simple quadratic. Thus, there are two equations with four

unknowns. This is a major disadvantage of using pole placement for MIMO systems;

there are more unknowns than equations which precludes a straight forward use of

Matrix-x to easily calculate the sliding surfaces. The problem can be overcome by

additional constraints on the eigenvectors or by assuming relationships between the

elements of C 2T. Here we arbitrarily assumed the two relationships:

C2(1'1) = 0.5C,(1,2) (3.17)

C2(2,1) = 0.5 C2(2,2)

Additionally, we pick the two poles at -0.50 and -0.51. C2 T can now be determined:

0.6750 -0.34001 (3.1)
2 [1.3500 -0.6800

With (3.18), the two sliding surfaces are:

a, = 1.0w + 0.67500 -0.3400z

02 = 1.0 q + 1.3500 0 -0.6800 z

Here we define the states to be interpreted as errors between their actual and

desired values. With this in mind, z, can be written as, z - zd-

Now that the sliding surfaces have been calculated, the control laws are

determined from (2.27):
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Iby = -(0.5420x10 4)w + (1.0557x10 4)q + (0.1354x10 4)0

- (0.3097x 104) r72sasgn(ol) + (0.9703x lO4) r 2 sasgn(o,) (3.20)

l= (0.9463x10 4)w - (1.7829x10 4)q - (0.2819x10 4)0

- (0.3464x10 4) T2 sasgn(al) - (1.2169x10 4) r72 satsgn(a,)

The reader should note that the same r72 has been used in front of both satsgn

functions for simplicity, although this is not required.

3. Computer Simulation with Pole Placement Controller

Fortran program SDVDIVPPTTPSFPOLE.FOR (see Appendix A) was

used to simulate the AUV in the dive plane for all three regions - hover, transition,

and cruise - using controllers designed by pole placement. The program assumes

perfect state feedback. Drag on the AUV is calculated in the program by the

trapezoidal rule. The surge velocity of the AUV is controlled in the program by the

speed controller developed by Lienard [Ref. 3]. The simulation time step is

at = 0.01 s.

Fortran program DPLOT2.FOR (see Appendix A) utilizes the raw data

generated by SDVDIVPPTTPSFPOLE.FOR and plots several graphs to visualize

the simulation. DPLOT2.FOR calls plotting subroutines from the software program

DISSPLA (Copyright 1988 by Computer Associates International, Inc.). Figures 2

and 3 were generated by DPLOT2.FOR and show the results of Run 1 at u = 0.25

ft/s with 4 = 2.0 and r2 = 0.2.

Figures 2 and 3 clearly show the pole placement controller doesn't work.

The bow thruster forces the bow down while the stern thruster lifts the stern. This
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Figure 2. Run 1 - AUV Response in the Dive Plane at Hover Speed, Pole
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pitching scheme would work well at higher speeds when the AUV has surge velocity

to reach depth; however, both thrusters need to work in the same direction in the

hover region.

What went wrong? At speeds in the hover region, we need to minimize

q and 0. This ensures the vehicle remains flat and the thrusters work in the same

direction to force the vehicle down to ordered depth; however, pole placement

doesn't allow the designer to choose which states to minimize. There are an infinite

number of solutions for C 2 T and not all of them may be effective. The two

relationships (3.17) we assumed to solve for C 2T obviously didn't lead to the desired

control action at hove- speeds; although, they may work at higher speeds with planes.

A designer could assume numerous relationships/values and conceivably never

stumble upon the correct combination.

It's obvious that simple pole placement, as formulated here, did not work

in this situation. The next step is to use the LQR technique as discussed in Chapter

II.

4. Controller Design by LQR Technique

A Matrix-x program was written to assist in the calculation of the sliding

surfaces and control laws via the LQR technique (see Appendix B). This program

was modified for all subsequent LQR controller designs. The designer interactively

enters the diagonal values of the minimization matrix Q. As discussed in the previous

section, minimizing q and 0 should yield sliding surfaces and contro! saws that result

in the correct control action in the hovering region. To minimize these states, the
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values Q11 = 5, Q22 = 1000, Q 33 = 500, and Q44 = 1 were selected after some

experimentation. The resulting sliding surfaces are:

01 = 1.Ow-0.14 5 2 0+0.447 1(z-zd) (3.21)

a, = 1.0q + 0.70740 - 0.0007 (z-zd)

and control laws:

Iby = -(1.2666x 103) w + (6.8616x 103 ) q - (0.2037x 103) 0

- (0.3097x 104) r 2 satsgn(o1 ) + (0.9703x104) rT2 satsgn(o 2 ) (3.22)

= -(1.5299x10 3)w - (7.1672x10 3)q + (1.3030x10 3)0

- (0.3464x10 4) r72 satsgn(a,) - (1.2169x10 4) r72 satsgn(o,)

In addition to the two zero poles, this controller has poles of -0.4477 and -0.7068 on

the sliding surfaces.

5. Computer Simulation with LQR Controller

Fortran program SDVDIVPPTTFPSFLQR.FOR (see Appendix A) was

used to simulate the AUV in the dive plane for all three regions - hover transition,

and cruise - using controllers designed by the LQR technique. The program is a

duplicate of the pole placement simulation program with the only difference being

the controllers. Fortran program DPLOT2.FOR was again used to plot graphs of the

simulation. Figures 4, 5, 6, and 7 were generated by DPLOT2.FOR and demonstrate

the results at two different speeds in the hover region. Figures 4 and 5 are of Run

2 at u = 0.00 ft/s, and Figures 6 and 7 are of Run 3 at u = 0.55 ft/s. Both runs were

executed with values of 0 = 2.0 and Ti2 = 0.2.
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Figures 4 to 7 conclusively show the LOR controller works satisfactorily.

The graphs of q and 0 reveal the vehicle has a minimal amount of pitch angle as it

is thrusted downwards. The AUV expeditiously reaches its ordered depth with a

minor amount of overshoot by using heave velocity w created by the thrusters

working together.

Note the simulations show the AUV's surge velocity ut increasing when the

thrusters are energized due to the unmodeled effect of the thrusters on the surge

velocity. Intuitively, this should not happen with the real vehicle.

D. CONTROL OF THE AUV IN THE CRUISE REGION

1. State Space Equations

To review, in the cruise region, 1.75 < u _s 6.00 ft/s, the thrusters are not

used and the nonlinear system is linearized at u = 3.875 ft/s to determine the sliding

surfaces and control laws. The resulting linear state space representation is:

, -0.2346 -0.5222 0.0251 0.0 w -0.0765 -0.1661

0.0581 -0.6483 -0.0668 0.0 q 0.0161 -0.0850 [6bpl

o 0.0 1.0 0.0 0.0 0 0.0 0.0 [6(
1.0 0.0 -3.8750 0.0 z 0.0 0.0

Again, the B matrix does not need to be transformed.

2. Controller Design by Pole Placement

It will be interesting to investigate if an effective controller can be designed

by pole placement at cruise speeds. The sliding surfaces and control laws are
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designed via pole placement identically with the procedure in the hover region. The

same poles (-0.50, -0.51) are utilized, and the same two relationships (3.17) are

assumed. The resultant sliding surfaces are:

a, = 1.0w + 0.5215 0 - 0.0329 (z-zd) (3.24)

a, = 1.0q + 1.04290 - 0.0658 (z -zd)

which yields the following control laws:

6 bp = -2.3407w - 7.1582q - 1.99710

+ 9.2671 r 2 sasgn(oa) - 18.1220 r 2 satsgn(o2) (3.25)

6SP = -0.5329w + 3 .2 9 09 q + 1.83790

+ 1.7528 r72 sasgn(ol) + 8.3426 r72 satsgn(o,)

3. Computer Simulation with Pole Placement Controller

Figures 8 and 9 were generated by SDVDIVPPTTPSFPOLE.FCR and

DPLOT2.FOR and conclusively prove the pole placement controller works well in

the cruise region. The figures exhibit Run 4 at u = 3.875 ft/s, , = 1.0, and

72 = 0.35. The AUV reaches ordered depth quickly with negligible overshoot.

Pole placement is obviously not a dependable procedure for designing

MIMO sliding mode controllers and will not be used again during this thesis. The

procedure we used to design a unsatisfactory controller in the hover region worked

well when it was applied to design a controller in the cruise region, and even this may

have been a matter of luck. The only advantage of pole placement is that it can

guarantee negative real poles on the sliding surfaces, but as we saw in the hover
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region this may not be the most important consideration.

4. Controller Design by LQR Technique

In the cruise region, the designer is faced with a dilemma when using the

LQR technique. Which states should be minimized to get the desired pitching

control action? Extensive experimentation led to minimizing w, q, and 0 as the best

solution. The diagonal of the LQR minimization matrix Q was selected as Q, = 100,

Q22 = 100, Q 33 = 100, and Q44 = 1. Matrix-x was again used to assist in the

calculations. The resulting equations are:

= 1.0w - 0.0945 0 + 0.0328 (z-zd) (3.26)

a2 -1.0q + 1.3127 0 - 0.0945 (z -zd)

6 bp  -1.2124w - 17.7554q - 6.3692 0

+ 9.2671 rl7satsgn(a1) - 18.1220 r7 satsgn(a2) (3.27)

6= -0.6568w + 4.4622q + 2.31810

+ 1.7528 r 2sasgn(a,) + 8.3426 r72satsgz(o2)

The two nonzero poles of this controller are -0.4438 and -0.9017.

5. Computer Simulation with LQR Controller

Figures 10, 11, 12, and 13 show Runs 5 and 6 for the cruise LQR controller

at 1.90 ft/s and 6.00 ft/s. The same values of 0, 7 J2, and Zd have been used as in Run

4 for the cruise pole placement controller. Again, the controller works well; the

AUV reaches ordered depth quickly with negligible overshoot. As expected, the

speed of response of the AUV increases with surge velocity due to the larger
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hydrcdynamic forces on the planes at higher speeds. The dominance of the stern

planes can be seen on the graph of planes versus time in Figure 12. The stern planes

actually shift over to a negative deflection as ordered depth is approached to reduce

the pitch angle and eliminate overshoot.

The heave velocity w plays an insignificant role in reaching Zd. In fact, the

AUV achieves a much smaller heave velocity in the cruise region as compared to the

LQR controller in the hover region. Instead, the AUV uses pitch angle and surge

velocity to reach ordered depth. In Figure 13 at u = 6.00 ft/s, we can see the AUV

reaches a diving pitch angle of about -24 degrees.

E. CONTROL OF THE AUV IN THE TRANSITION REGION

1. State Space Equations

As discussed earlier, both planes and thrusters will be used in the transition

region due to their comparable effects in this speed range. With all four inputs

utilized, the control distribution matrix B at u = 1.250 ft/s is:

-0.007959 -0.017288 0.000166 0.000132

0.001672 -0.008841 -0.000047 0.000042 (3.28)

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

Now, there are the same number of inputs as states, or in other words, n = m! This

creates a severe problem. Utkin's method for designing a MIMO sliding mode

controller requires the B1 matrix be nonsingular and of dimension mxm; hence, B1
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must be a 4x4 matrix which makes it equivalent to B! In this case, however, B, is

obviously singular and noninvertible:

-0.007959 -0.017288 0.000166 0.000132

0.001672 -0.008841 -0.000047 0.000042 (3.29)

0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0

The cause of the problem can be understood by examining the four

equations that comprise the state space representation. There are only two

equations, heave (3.1) and pitch (3.2), that contain the control inputs. The other two

equations, (3.4) and (3.5), are kinematic relations which do not assist in the

determination of the inputs. Thus, there are four unknowns - lb, l,,, 6bp, and 6 sp -

and only two equations. The control inputs cannot be uniquely determined and an

optimization scheme is needed. This was actually done in the hover and cruise

regions by reducing the number of inputs from four to two based on their

effectiveness, i.e., thrusters when hovering and planes when cruising.

In the transition region the effectiveness of the control inputs are

essentially equivalent, and the number of inputs can be reduced by assuming a

relationship between them. Here it was assumed:

sv= by (3.30)

6S =-6 b6sp = -bp

and the linear state space representation at u = 1.25 ft/s becomes:
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w -0.0757 -0.1684 0.0251 0.0 w 0.00933 0.00030

4 0.0188 -0.2091 -0.0668 0.0 q 0.01051 -0.00001 6bp (3.31)=+I

O 0.0 1.0 0.0 0.0 0.0 0.0 LIbvl

1.0 0.0 -1.2500 0.0 z 0.0 0.0

The LOR technique can now be applied to design a MIMO sliding mode

controller.

2. Controller Design by LQR Technique

After some experimentation, the LQR minimization matrix Q used in the

cruise region was again used in the transition region, with Q11 = 100, Q22 = 100,

Q33 = 100, and Q44 = 1. The controller equations become:

a = 1.0 w - 0.0735 0 + 0.0678 (z -zd) (3.32)

a, = 1.0q + 1.0855 0 - 0.0735 (z-zd)

6 bp = 5.1w - 81.8q - 2.30

- 1.6 r 2 sasgn(a 1) - 93.7 r72satsgn(a2)

6sp = -6bp (3.33)

Ib, = -134.7w + 3374.7q + 271.20

- 3309.5 r2 satsgn(l) + 2937.0 r 2 satsgn(o 2)

sv Iby

and the two nonzero poles are -0.1614 and -0.9919.

3. Computer Simulation with LQR Controller

Figures 14 to 17 show simulations of the AUV as generated by

SDVDIVPPTTPSF_LQR.FOR and DPLOT2.FOR at two different speeds in the
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transition region. Figures 14 and 15 show Run 7 at u = 0.90 ft/s, and Figures 16 and

17 show Run 8 at u = 1.60 ft/s. Both runs were executed with 4 = 2.0 and T72 = 0.2.

The figures establish the controller works, if not spectacularly. This marginal

performance is caused by the changing hydrodynamic forces on the planes in the

transition region. At speeds above u = 1.25 ft/s, the planes begin to dominate. At

lower speeds, the thrusters begin to dominate. The thrusters work together as they

did in the hover region, while the planes deflect oppasitely to create a pitch ailgle as

they did in the cruise region.

a. Modified LQR Controller

The above scheme works well at the bow; the bow planes and bow

thruster always work together. On the other hand, the stern is a problem because

the stern planes and stern thruster alwaiys fight each other. This detrimental effect

can be rectified by turning off the stern thruster at high speeds (above 1.25 ft/s) and

by centering the stern planes at low speeds (below 1.25 ft/s).

Computer program SDVDIVPPTTPSF_LQR.FOR was altered to

enact this modified controller and Figures 18 to 21 represent the results of Runs 9

and 10 using this controller. Note Figures 18 to 21 are labeled, "MODIFIED". Since

all the set points are identical, Runs 7 and 8 can be easily compared to Runs 9 and

10. The modified controller is clearly superior, especially at the slower speed.

By modifying the controllers, the transition region has in effect been

split into two regions; in essence there are a total of four control laws. If time

permitted another iteration, a more elegant solution would be use the new
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assumptions to redesign two separate controllers in the transition region, one for

speeds above 1.25 ft/s and one for speeds less than 1.25 ft/s. Theoretically the

effectiveness of the controllers will be enhanced if surge velocity is divided into

increasingly smaller regions, each with unique sliding surfaces and control laws.

However, experience dictates that this scheme cannot be taken too far. The

computer code cannot be made so large that it is unable to control the AUV in real

time without unnecessary computational delays.

The control of the AUV in the transition region is difficult and the

only consolation is the real vehicle will be operated in this region only for short

periods of time as it speeds up to cruise or slows to hover.

F. OBSERVERS

1. Design

In addition to the chattering problem discussed in Chapter I, the

requirement of full state feedback is a major disadvantage of the sliding mode control

technique because in most cases one or more of the states cannot be directly

measured. Up to this point, it has been assumed the controllers have perfect state

feedback. In fact, the real AUV has no sensor for measuring the heave velocity w.

The predicament is easily overcome by designing a reduced order (Luenberger)

observer to estimate the heave velocity w. The method of designing a Luenberger

observer is well known and will not be discussed in detail here; however, a couple of

interesting points need to be discussed.
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The observers are designed starting with the governing equations expressed

in the linear state space representation of (2.1), restated here:

i = Ax + Bu (3.34)

The A matrix is the same for all three speed regions if it is expressed as a function

of surge velocity u:

allU a 12u a13  0.0

a2 1u a2,U a23  0.0 (3.35)

0.0 a32 0.0 0.0

a41 0.0 a43 U 0.0

Thus, this A matrix can be used for all three regions; however, this cannot

be done for the B matrix because the inputs u are different in each region. If B is

expressed as a function of surge velocity ui for each region, they can be written as:

* Hover region:

b1 (0.25 - 0.0083u) b 12(0.25 - 0.0083u)

B b2(0.25 - 0.0083u) b,, (0.25 - 0.0083u) u=[tv] (3.36)

0.0 0.0

0.0 0.0
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" Transition region:

b11u2  b12 (0.25 - 0.0083u)

B = b, 1u2  b,2 (0.25 - 0.0083u) 1 bp (3.37)

0.0 0.0 [Ibv]

0.0 0.0

" Cruise region:

b11u2  b1 2u2

B= b 21 u 2 b 22 u 2  u 6 [Pj (3.38)

0.0 0.0 [SP
0.0 0.0

Expressing B in general terms:

B11  B12

B1 B12 (3.39)

0.0 0.0
0.0 0.0

Then the observer equations can also be expressed in general for all three observers:

= L 1 q + L20 + L 3(z -Zd) + (3.40)

2 = F2 + Glq + G, + G 3 (z-Zd) + Hu I + Hu, (3.41)

F = atlu -Liau - L33a 41 (3.42)

Gu =a,2u -Lla -La +FL,, G a -La -Lau+FL2, G3 =FL3 (3.43)
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H =B 11 - LiB21 I H2 = B12 -LIB2 2  (3.44)

L 1  - , L = 0.0 , L 3 = L 1  (3.45)
a21ju +a 41

uI = input1 U2 = input 2 (3.46)

S1 = observer pole (3.47)

2. Simulation with Observers

The LQR simulation program was rewritten with observers for the heave

velocity w. The new program is called SDVDIVPPTTOBSLQR.FOR and can be

found in Appendix C. The three observers are nested in subroutines at the end of

the program. DISSPLA plotting program DPLOT4.FOR (see Appendix A) was used

to generate graphs of simulation runs.

To allow the observers to settle out after the start of the simulation, a 10

second delay was programmed into all the observers during which the estimated value

of w was set to zero. The pole of each observer was set to a value twice as fast as

the slowest sliding surface pole in the respective speed region.

Figures 22 to 27 show simulation Runs 11 to 13 that were generated by the

programs. Each run was conducted in a different controller speed region. The

figures reveal that the observers work well. Vehicle control is not compromised by

using an estimated value for the heave velocity.

It is imperat've that an observer for the heave velocity is utilized at slower

speeds because w becomes the predominant value used by the controller. In fact, it
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was found that an observer was not needed in the cruise region because w is

inconsequential at high speeds.

G. TRANSITION IN/OUT OF HOVER

One of the most difficult maneuvers for an AUV is the transition into or out

of hover. This is because control of the vehicle is passing between controllers and

observers. Program SDVDIVPPTTOBSLQR.FOR was modified for differing initial

conditions to explore this maneuver. Figures 28 and 29 show Run 14 in which the

AUV transitions into hover while conducting a depth change. This is a radical

maneuver. Figures 30 and 31 show Run 15 in which the AUV transitions out of

hover while conducting a depth change.

The figures exhibit the resilience of the controllers and observers. The radical

maneuvers create disturbances on the vehicle, but they are overcome by the control

package and the vehicle settles out. In Run 14, there is some oscillation of the

vehicle around 0 degree of pitch as it is thrusted to ordered depth; however, the

oscillation is only about -+ 4 degrees and is acceptable.

IH. CONCLUDING REMARKS

A controller package has been designed for the AUV that effectively controls

the vehicle throughout its entire operational speed range. The controller package has

been optimized by dividing up the surge velocity into three different regions and

designing a separate controller and observer for each region. This strategy is

necessary because the hydrodynamic forces on the planes change with surge velocity.
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Obviously to enact a MIMO sliding mode controller for the real NPS AUV, it

will be necessary to verify all hydrodynamic coefficients. In addition, Kalman filters

will have to be used on the real vehicle to smooth the measurements of the states.

This due to noise.
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IV. LINE-OF-SIGHT GUIDANCE OF THE AUV USING MIMO SLIDING
MODE CONTROL

A. INTRODUCTION

Control of the AUV in the horizontal plane will now be analyzed. Steering

control of the AUV is essentially analogous to depth control, with minor excursions.

The first difference is the predominance of disturbances in the horizontal plane,

especially ones of a steady-state nature. Transient disturbances are easily handled

by the inherent robustness of the sliding mode control design.

In the dive plane, environmental steady-state disturbances are uncommon;

ocean currents are mainly horizontal. Of course, transient disturbances due to wave

action occur near the surface. However, the effect of ocean currents on the AUV

requires steady-state disturbances to be accounted for in steering controller design.

Another difference of steering control is the requirement to adhere to a

navigation scheme. Two common methods of navigation are line-of-sight (LOS) and

cross-track-error (CTE) guidance. This chapter deals with LOS guidance, while the

latter is discussed in Chapter V. LOS guidance of the NPS AUV was first

investigated by Lienard [Ref. 3] for SISO systems.

For two reasons, this thesis will investigate steering control at higher speeds by

the use of rudders only. First, time and space requirements for this thesis don't

permit analyzing the horizontal plane in the same manner as the dive plane - at three
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different speed ranges. Second, and more importantly, once MIMO steering with

rudders has proven effective for guidance control, it would be unnecessarily repetitive

to repeat the analysis with horizontal tunnel thrusters. Obviously, the three tier

control hierarchy used successfully for diving can be extended to steering.

B. NONLINEAR GOVERNING EQUATIONS IN THE HORIZONTAL PLANE

1. Addition of Bow Rudder to SDV Model

As discussed in Chapter III, a bow rudder needs to be added to the SDV

model of [Ref. 7] to approximate the geometry of the NPS AUV. The assumption

was made that the bow rudder would have the same effect on the vehicle as the

"real" stern rudder. Hence, the magnitude of the hydrodynamic coefficients would

be equal for the two rudders; although, in some cases they would be of opposite sign:

6br = 2.730x 10-2 = 2.730x 10-2

I/ = 1.290x10 - 2  Ml6 = -1.290x10- 2
6 br 6sr

Y6 = 8.180x10 - 4  Y6 = -8.t80x10 - 4  (4.1)

I, = 1.730x 10-3  X,6s = 1.730x10 -3

X'6br6br 1.01010 - 2  X6s r = -1.010x10 - 2

2. Assumptions

For control of the vehicle in the horizontal plane, the following

assumptions have been made:
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* Vehicle motion is confined to the horizontal plane:

(p,p, q, 4, E, 0, w, 6br, 6 srI Iby, Is. = 0)

" The AUV is neutrally buoyant.

" The CB and CG are on the vehicle's centerline.

" The AUV is restricted to speeds in which the rudders are effective.

* The rudders have a restricted range of motion identical to the planes.

" Surge velocity can be assumed constant in the yaw and pitch equations.

" Rudders are infinitelv responsive, i.e., no lag in reaction time. (This is a valid
assumption because steering gear dynamics are much faster than the dynamics
of a small turning vehicle.)

3. Resulting Equations

After all modifications and assumptions, the nonlinear governing equations

in the horizontal plane from [Ref. 7] become:

9 Lateral (Sway) equation of motion

m(; + ur + xgf - Ygr) - -L' r
2

+ -L3(y 1  + Vur)

(4.2)

+ 2PL2[Y/uv + U (Y6b + V6 6)]

_ 9___ o CD yh (x)(v, + xr) 3dx

5 istern UCf(X)
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* Yaw equation of motion

+ mxg ( + ur) + myg(vr - a) =

2

+ EL4 (' + ?' ur)
2 (4.3)

+ PL UV[Nv + u2(IV 6b + 46s,)]2

p Ow CDy h(x)(v +xr)3
- jse° Uef(x) xtdx

• Surge equation of motion

m(t - vr- Xgr 2 - ygf) =

2

+ PL3[X. + ),,vr + ur(X b6 br 6 6

(4.4)

P2 r+ .PL2[u2 62 + u(A7 6 2

2 "6bb br br ~sr~s

+ .£L2U2X2 prop

* Kinematic definition

q=r (4.5)
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* Cross flow velocity equation

UCf(x) = Iv + xrl (4.6)

* Inertial position rates

i = u cos* - v sin* (4.7)

Y = u sin* + v cos*

The propulsion equations (3.6) to (3.10) still apply in the horizontal plane.

C. LINEAR STATE SPACE REPRESENTATION

The yaw and pitch equations are linearized at u = 3.0 ft/s to obtain the

equations of motion in the linear state space representation of (2.1) for control law

design. As in the dive plane, a Fortran program was utilized to assist in the solution

of the yaw and sway equations (see Appendix A). With the inclusion of the linear

kinematic definition (4.5), the state space representation is complete:

-0.1265 -1.0547 0.0 v 0.1168 0.1036 6bj(48

r= -0.0084 -0.2952 0.0 r + 0.0398 -0.0382 6 I (4.8)
6

0.0 1.0 0.0. [ 0.0 0.0 sr

As before, (4.8) is partitioned into the form of (2.21) and (2.22) for the application

of Utkin's MIMO sliding mode control design technique:

-0.1265 -1.0547 A O.01
A, = -0.0084 -0.2952j A12 = 0.0
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A [21  [0.0 1.01 A22 = [0]

[0.1168 0.1036 (4.9)
B=1 [0.0398 -0.03821

=I [vY2 b' u = [6,, 1T

D. CONTROLLER DESIGN BY LQR TECHNIQUE

Matrix-x was agdin utiiiied for calculations by the LQR design technique. After

experimenting with the diagonal of the LQR minimization matrix Q, it was found that

satisfactory results were obtained with Q11 = 4.0, Q22 = 4.0, and Q33 = 1.0. The

resulting sliding surfaces are:

a, = 1.Ov (4.10)

a, = 1.Or + 0.5(W - ',9

The third state is expressed explicitly as the difference between the actual and desired

values. Hence, *d is the Euler yaw angle in the direction of the desired navigational

reference point and is measured clockwise from due north which is defined as 'P = 00.
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With (4.10), the control laws can be determined:

6 br = 0.66421 + 2.2219r - 4.4499 r 2 satsgn(ai)

- 12.0713 r72 satsgn(o,) (4.11)

6sr = 0.4725 v + 7.6752r - 4.6361 72 satsgn(ol)

+ 13.6037 72 satsgn(a 2 )

The resultant sliding surface pole is -0.50.

E. LINE-OF-SIGHT GUIDANCE SCHEME

1. Hit Criterion

The steering controller just designed, (4.10) and (4.11), must be able to

navigate the AUV through a series of way-points in the horizontal plane. For the

LOS controller, the criterion for a "hit" of a way-point has been determined to be

when the AUV is within half a ship length or 8.7125 ft, i.e., the AUV has reached a

way-point if it is within a circle of radius 0.5L centered on the way-point. In practice,

the hit criterion used would depend upon the AUV's mission.

2. Shortest Turn

For efficiency the AUV should always turn through the shortest angle to

achieve the desired heading. This is accomplished in the simulation by the excerpt

ot Fortran code in Figure 32. It was decided that angles within the simulation

program would kept between -rr and n by using the intrinsai. For tran function

ATAN2. This results in a discontinuity at due south, vice due north
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C
C CALC ULATE THE QUICKEST ROUTE PSID
C

IF((PSI .GE. 0.0 .AND. PSI .LE. PIE) .AND. (PSID .GE. -PIE .AND. PSID .LE.
PSI-PIE)) THEN

PSID = PSID + 2.0*PIE
ELSEIF((PSI .GE. -PIE .AND. PSI .LT. 0.0) .AND. (PSID .GT. PSJ+PIE .AND. PSID

.LE. PIE)) THEN
PSID = PSID - 2.0*PIE

ENDIF

Figure 32. Fortran Code for Calculating the Shortest Turn

hd is the only exception to the rule of angles from -n to t. The Fortran

code of Figure 32 allows h*d to be less than -ri or greater than r in situations when

* and *d are on opposite sides of due south and the quickest route is across the

discontinuity. This allows the AUV to "chase" the desired heading across the

discontinuity. This is very similar to the method used by Lienard [Ref. 4].

F. SIMULATION

Programs SDVLOSRR300PSFLQR.FOR (see Appendix A) and

PLOT7A.FOR (see Appendix A) were written to simulate the AUV in the horizontal

plane with perfect state feedback (PSF). Figures 33 and 34 show Run 16 conducted

at an ordered speed of u = 6.0 ft/s, 0 = 2.0, and r72 = 0.5. Lienard's speed

controller [Ref. 3] was again employed. The speed controller's saturation function

was kept at 0 = 1 0 for all runs because it was found to give the best results.
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Initial conditions of the simulation at t = 0 are the vehicle headed north

(qr = 00) at ordered speed Ud with rudders centered. The positive x-axis is due north

and the positive y-axis is due east. The small circles on the global plot of Figure 33

mark the location of the way-points. (Nothing should be inferred from the circles'

size.) The global plot shows the vehicle smartly hitting the desired way-points.

The graph of rudder action deserves close scrutinization. Although the two

rudders have the same effect on the vehicle, i.e., the same hydrodynamic coefficients,

the control package does not order symmetrical action of the rudders. The rudders

initially deflect in opposite directions as expected, but the stern rudder returns to zero

quicker. In fact, the stern rudder continues past center and deflects a small amount

in the same direction as the bow rudder. Thus, the stern rudder prevents overshoot.

This action was not consciously designed into the controller and could not have been

predicted. Each rudder operates independently of the other. This is a result of

Utkin's MIMO sliding mode method.

G. STEADY-STATE DISTURBANCE COMPENSATION

1. Theory

Figures 35 and 36 show the results of Run 17 with a steady-state current

present. The current is expressed as absolute velocity components in the inertial

global frame, u, 0 = 2.0 ft/s and vo = 2.0 ft/s. Thus, the total current has velocity of

2.828 ft/s directed towards the north-east, i.e., q = 45 . This is a significant current

of almost 50% of the AUV's maximum speed.
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The global plot on Figure 35 exemplifies the problem of uncompensated

disturbances. The vehicle hits the way-points, but does so via a circuitous route.

Also, in contrast to common sense the rudder angles are initially small and utilize

their full strength only during the final stage of the approach to the way-point. Let's

determine the nature of the problem and investigate a way to compensate.

First, the linear state space system of (4.8) can be expressed in general

terms:

= ay11 + 112r + bl16br + b1 26sr

r = a,1 v + a,,r + b, 16 br + b, ,6sr (4.12)

''=r

In a like manner, the controller equations expressed in general are:

a , = S11  + s 1r + s13(* -*d) (4.13)

a., = sI v + s,r + s,3(41 -*d)

6br = kl + k1r + k 13satsgn(ol) + k 14sasgn(o,) 44
6 sr = k,) v + k,,r - k, 3satsgn(a,) + k, 4satsgn(o,)

where the r72 terms have been incorporated within the gains k, 3, k 141 k, 3, and k, 4 in

(4.14). With current present, the inertial position rates (4.7) become:

Co Cos* vsin* (4.15)

=CO + u sin* + v cos,
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Equation (4.15) can also be expressed in the local reference frame formed by the leg

of two consecutive way-points:

.t, = u + u cos*' - vsin(4.16)

v + u sin' + v cos*'

where u and t, are the current components with respect to the local leg. and 4r I is

the heading angle with respect to the local leg:

*' =_ (* - a) (4.i7)

a- arctan Y 2 Y (4.18)
X2 -x I

The variable a in (4.17) and (4.18) is the angle the local leg makes with the x-axis

which is due north or ir = 0'. Positive a is defined as clockwise. The points (xj, y)

and (x2, Y2) are the coordinates of the twc way-points that define the local leg.

Finally, the local components of current are related to the global components by:

u= v sina + u cosauC CO (4.19)

v = v cosa - u sinaC CO CO
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When the AUV is at a steady-state condition, (4.12) becomes:

;=al v + a12r , bl] 6 br + b 126sr = 0
alv + a2 2r + b,16or + b2 6sr = 0 (4.20)

r =0

Assuming zero deflection of the rudders at steady-state even in the presence of a

current, (4.20) results in:

v = r = 6br = 6sr =0 (4.21)

and (4.21) then leads to the conclusion that:

C,= 0 / (4.22)

a, 0 d*
-2  I j - ' ,

Hence, the AUV achieves desired heading even in the presence of a current! In that

case, however, is nonzero and y' increases linearly with time. The result is the

AUV is continuously pushed laterally away from the leg by the vi component of

current.

What is the steady-state value of *'? Through the LOS guidance scheme,

the desired heading becomes a function of the instantaneous ship position and the

next desired way-point. The local desired heading /$ at steady-state can be

computed from the kinematics:
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u, +U Cos¢
C + (4.23)

C /
Y9 = + U SflnjI'

and from the LOS requirement:

tan*/ = - (4.24)

Using (4.23) and (4.24), we can see that:

tan*/ (4.25)
U

C

Thus, the LOS guidance law eventually aligns the AUV with the current when it

approaches a way-point! This action can be seen in the global plot of Figure 35.

The requirement 9' = 0 can be achieved by modifying the sliding surfaces

to:

0, = s11 i' + s 1 r + s 13(* * Id) + S 3 arcsi4.(4.26) (4.26)

0, =S,~ V +I s22r + s2(4 23 'd+sarcsint~

Then at steady-state (4.22) (a1 = a, = 0) and hence (4.21) are achieved, but there

is a heading error at steady-state of:
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vC (4.27)
lerror *i]error - arcsin 

(

but in this case the desired result of 9' = 0 is achieved. To put it in simple terms,

the AUV overcomes the local lateral component of current by keeping its bow

headed into the current an amount *error in (4.27).

The sliding surfaces for the AUV's LOS controller can now be explicitly

expressed:

a1 = 1.0v

a, = 1.0 r + 0.5 (-d) + 0.5 arcsinLv }  (4.28)

The reader should note that we could have assumed a zero local heading

error (=' - 0) at steady-state, vice the assumptions of (4.21). This would lead to

nonzero rudder deflections at steady-state. We'll explore this different approach in

Chapter V for the CTE guidance steering controller.

2. AUV Simulation with Steady-State Disturbance Compensation

Fortran program SDVLOSRR300PSFLQR.FOR was modified to enact

the disturbance compensation of (4.28). Figures 37 and 38 are for Run 18 with the

modified sliding surfaces. The only difference between Run 18 and Run 17 is

disturbance compensation, so they can be easily compared. Disturbance

compensation clearly corrects for the presence of the current. The AUV overcomes
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the current and hits the designated way-points. It should be emphasized that in all

simulations where current is present, the full strength of the current is instantly

applied at t = 0, thus creating a severe start-up test for the controller.

Unfortunately, one difficulty remains. Ocean current is not directly

measurable by the AUV. Additionally, at the time of this thesis it was not clear if

the NPS AUV would be able to measure sway velocity i. Assuming the worst, v will

also be unmeasured. As in the diving situation, observers must be designed for state

estimation.

H. OBSERVERS

1. Design

A reduced order observer can be designed based on x, y, 1, and r

measurements to estimate the sway velocity v and the local current components u,

and vC. The current component uc does not need to be observed because the control

package does not use it, but it will be included in the output of the reduced order

observer as an exercise.

The procedure is the same as in the diving controller; however, to start the

design process the state vector is augmented. The linear state space representation

becomes:
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allUV a 1 2ur + bIIU26br + b 1
2 U6sr

. --a 1 b 12 s

a,1 utv + a22 ur + b, Ii2 6br + b U 2 6s
22r

= C + V + u* (4.29)

~'u+u-U c
UC +U= C

C 
0

The reduced order observer equations become:

p = 2 1 + L12r (4.30)

p - 21. + L, (4.31)

12c = 2 3 + L 3 4x' - u cosip' (4.32)

i' =S12) + (a12u-L12a22u +SIL1z)r + (bl -b21L12)U 2 6br (4.33)

+ (b 12 - b 2 L 12)U 2 6sr

i2 = S2z + 
5222 - L23t sing/ + S2L23 + SL12r (4.34)

i3 = s32 3 +S 3L 34x, (4.35)

allU - S1  L = sL =

L a- u L23 - $2 L34 -3 (4.36)
a21u
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S1, S,, S3 - observer poles (4.37)

The observer poles were selected at -1.0, -1.1, and -1.2. The estimated values aC and PC

are updated every time a new straight line segment is encountered. The reduces the

transients in the observer during transition between one way-point to the next.

2. Simulation with Observers

Programs SDVLOSRR300OBSLQR.FOR (see Appendix D) and

PLOT8.FOR (see Appendix A) simulate the AUV with disturbance compensation

and observers. Figures 39 and 40 show Run 19 which is a duplicate of the previous

steering simulation runs but with observers. The observers do a very good job of

estimating the unknown states, and vehicle control is not degraded by using these

estimates.

All previous steering simulations runs (Runs 16-19) have been executed

with a simulation time step of ,&t -- 0.01 s. The control packages were also updated

every 0.01 s. In reality, the AUV's controller may not be updated this often. To

investigate what may happen, program SDVLOSRR300OBSLQR.FOR was modified

so the control package was only updated ever 0.1 s and Figures 41 and 42 show the

results. The only effect on the vehicle is a slight degradation of the estimates of the

unknown states. This degradation is not significant enough to jeopardize vehicle

control even slightly.
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I. CONCLUDING REMARKS

A MIMO sliding mode controller has been designed for the AUV which utilized

a line-of-sight guidance scheme. The controller proved to be very effective.

Disturbance compensation was achieved by means of a feedforward term in the

sliding surface equations. Disturbance estimation was possible by using a standard

Leunberger observer. The resulting scheme demonstrated excellent path keeping

characteristics in the presence of strong lateral currents wit. iut any compromise in

stability and robustness properties.

Line-of-sight guidance is a good navigation scheme for open ocean cruising.

However, LOS may not provide adequate guidance in restricted waters because it

allows the vehicle to overshoot way-points. This problem leads us to explore cross-

track-error guidance in Chapter V.
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V. CROSS-TRACK-ERROR GUIDANCE OF THE AUV USING MIMO SLIDING
MODE CONTROL

A. INTRODUCTION

Analysis of the simulation runs in Chapter IV show that the AUV with LOS

guidance is unable to follow a perfectly straight path in the presence of a steady-state

disturbance, even with compensation. This is adequate for open ocean cruising;

however, LOS guidance will not fulfill the tolerance requirements of ,)perations in

restricted waters unless many closely spaced way-points are programmed into the

AUV's mission planning computer. Cross-Track-Error (CTE) guidance is an

alternate scheme for steering control that will enable the AUV to follow a straight

path.

B. CROSS-TRACK-ERROR GUIDANCE SCHEME

All the tools we need to design a CTE guidance steering controller were

introduced in Chapter IV. The governing equations, (4.2) to (4.7), still apply. Also

valid are the equations expressed in the local reference frame, (4.16) to (4.19). When

the AUV reaches a new way-point, that way-point becomes t*.e new origin of a local

coordinate system formed with the next ordered way-point. Obviously this scheme

requires the augmentation of the state vector used for LOS guidance with the cross-

track-error variable,y. The new linear state space system used for controller design

can be expressed in general terms without disturbances as:
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= alit + a 12r + bl 6 br + b12 6sr

a 21 v + a 22r + b6br + b226sr (5.1)

W' =r

=v + a43

The constants in (5.1) have been determined by linearization at a particular surge

velocity, u. As in the previous chapter, a surge velocity of U = 3.00 ft/s has been

chosen to produce the linearization (5.1).

C. CONTROLLER DESIGN BY LQR TECHNIQUE

The LQR method utilized with Qll = Q22 = Q33 = 100 and Q44 = 1 results in

a control package with the following equations:

a, = 1.0000v + 0.0920*' + 0.0393Y (5.2)

a, = 1.0000r + 1.2423* / + 0.0920y/

6 br = -0.6207v - 7.1479r - 3.8547*' - 4.4499r12satsgn(o 1 )

- 12.0714 r 2satsgn(a 2)

6sr = 1.5414v + 17.3469r + 3.2066r' - 4.6361r72satsgn(ol)

+ 13.6038 r 2satsgn(a 2)

This control package has poles of -0.3336 and -0.9480 on the sliding surfaces. The

next step is to design disturbance compensation into the controller.
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D. STEADY-STATE DISTURBANCE COMPENSATION

Two methods of compensating for steady underwater currents will be discussed.

The first method compensates for disturbances by utilization of a heading error. This

was the method used in Chapter IV with LOS guidance where the vehicle angles its

bow into the current to overcome it. The second method to be discussed uses the

vehicle's rudders to overcome the current. This allows the vehicle's bow to remain

pointed down the track. This method exploits the unique capabilities of the MIMO

CTE steering controller.

1. Theory of Heading Error Compensation

To simplify the analysis, the sliding surfaces (5.2) and the control laws (5.3)

are expressed in general as:

[a

a,= s1lv + s12r + s13*1 + s14)(5.4)
a, = $21v + s 2 r + s +

6 br = kll v + k 12 r + k13 + kly + k 15 r 2satsgnj(Cr)

+ k 16 r 2satsgn(o,) (5.5)

6 sr = k21 v + k22 r + k 23 + k24Y + k 2 5r 2 satsgn(o1)

+ k 1 6 7 r 2 satsgn(o,)

The reader should note that k14 = k14 = 0, but the equations will be left in this very

general form as a function of the entire state vector.
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As stated previously, heading error compensation is identical with the

procedure used in Chapter IV for the LOS controller. The reader should note that

the following analysis is conducted at steady-state conditions. The procedure starts

with steady-state assumptions (4.21) repeated here for convenience:

v = r = 6 br = 6st = 0 (5.6)

Equation (5.6) leads to a nonzero heading error at steady-state, or in other words the

AUV fights the disturbance by angling its bow into the current, not by using its

rudders.

The analysis to compensate for disturbances is complicated by the

additional state y'. The requirement of realizing a CTE guidance scheme results in

the CTE part of (4.16) becoming:

Y/ = vc + u sin* / = 0 (5.7)

Solving (5.7), we get the resultant steady-state heading error:

/C (5.8)
',=-arcsii{

Now we must see if this heading error has any undesired effects on the controller.

Equations (5.6), (5.7), and (5.8) result in the control laws (5.5) simplifying to:
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k1 r i satsgn( c) + k16  r 7satsgn(a 2) = k13arcsin u 15

k25 rl2satsgn(a) + k26 r72satsgn( 2) = k3arcsin u

at steady-state. Solving (5.9) for the two saturation functions:

I 1 -;3k26  k 16 k, 3

satsgn(al- I t132 arcsin _c

/2 k 26  - k 16k,5 J (5.1J
(5.10)

satsna 1 k 15 k 2 - k13 k 2 rsnV]sasgn(o2) = k15k 26 - k16 sk, {U

For purposes of controller stability, at steady-state we desire the saturation functions

to be:

satsgn(o 1) S 1 (5.11)

satsgn(o2 ) s 1

which establishes the lower limit on r72. Then it follows from (5.11):

a 1
satsgn(al) = s o (5.12)

a 
2

satsgn(a 2) = -
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Combining (5.10) and (5.12), we can solve for the uncompensated sliding surfaces at

steady-state in the presence of a constant disturbance:

k 13 k 2 6 -k 16 k- 3al = -)( arcsin

- k16k25 1 (5.13)

0, = 0 k:: k:;J arcsin2%

Back substitution of (5.13) into the sliding surface equations (5.4) yields two

expressions for the uncompensated steady-state cross-track error:

- rk 13k26 k 16  + s13 arcsin

s 4 [ 2 k 5k, -k 6 k25  U (5.14)

1 0 k15k23 - k13k2 5
k 2k , k 6 k + s 231  arcsin

Effective disturbance compensation can be achieved by eliminating the effect of these

two terms. To eliminate (5.13) and (5.14) the sliding surfaces are augmented with

the additional terms:

k 2-k k 'V

o I =s11v sr + s1 3 *' +Sl) + k +S131
(5.15)

02 = S21V + S ,2r + + S ,+1 +kSk 23 k 13k25] +23 arcsinf- 1

r+ 2 k 15k, 6 k16k25 UI

110



2. Simulation with Heading Error Compensation

The observers for v, vC, and uc designed in Chapter IV can be used for the

CTE controller with no modification. Programs SDVCTERR300OBSLQR.FOR

(see Appendix E) and PLOT10.FOR (see Appendix A) were used for AUV

simulation with CTE guidance. Run 21, shown in Figures 43 and 44, was conducted

with a hit distance of 0.5L as was used with the LOS controller. Global currents of

LUC0 =2.0 ft/s and Vco = -2.0 ft/s operated on the vehicle starting at t = 0. Vehicle

speed was u = 6.0 ft/s and controller parameters were 0 = 2.0 and 2 = 0.35.

The AUV easily follows the straight path between successive way-points

even in the presence of a significant current, but the small hit criterion of 0.5L causes

the AUV to overshoot the next leg in cases where the next leg must be reached

through a sharp angle. The worst case can be seen in the global plot in Figure 43

at way-point (400,400). The AUV overshoots the way-point and must reverse course

to fight the current back to the next leg. This wastes time and energy.

A simple but very effective adjustment is to change the hit criterion to a

larger value. Run 22 is a duplicate of Run 21 but with a hit criterion of seven ship

lengths or 7L. Figures 45 and 46 show the simulation results. The new hit criterion

yields a vast improvement in the AUV's ability to track the path. The AUV is also

able to travel farther because its path keeping has been optimized.

Increasing the hit distance does have a drawback. When the AUV must

turn through a shallow angle for the next leg, 7L is too large a hit distance and the

vehicle heads for the next leg too early. Hence, increasing the hit distance is a
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compromise. There are alternate methods for modifying the AUV's control package,

but these are beyond the scope of this thesis and are the subject of further study at

NPS.

3. Theory of Rudder Action Compensation

As alluded in Chapter IV, an alternate method for steady-state disturbance

compensation requires the AUV's rudders to overcome the underwater current, as

opposed to using a heading error in the previous method. This capability is an

inherent advantage of a MIMO control system. A SISO steering controller could not

achieve such action.

The design starts with new steady-state assumptions:

r = *' = y = 0 (5.16)

The CTE equation for ' simplifies to:

V = -VC  (5.17)

and using (5.17) in (5.1) yields:

b1l 6 br + b12 6sr = allvc (5.18)

b21 
6 br + b 22

6 sr = a21v c

Treating (5.18) as two equations with two unknowns, we solve for the steady-state

rudder deflections needed to overcome the underwater current:
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al 1b22 - a,b1

b b lib ' -~b, b l2 J (5.19)
6 = a ,,b,, - ab21V

sr - b 2 b12

As before, we must analyze the resultant effect on the sliding surfaces and control

laws at steady state. Substitution of (5.19) into the control laws (5.5) allows the

determination of the uncompensated sliding surfaces at steady-state in the presence

of an underwater current:

: v [(kIk126 -k 16kl) k26(alb,, -a 1 bz) -k 16(a1 bl, -allb2,)

i2 (k sk26 kl 6k 25) (k15k 6  - k16k 5 ) (b 1 b22  - b 2b21)

v'O (kiIk.,s -k1sk21) k25(alb2 - a2 ,b 12) -k 15 (a,1 b1 -allbza)
r2 (k 16k,5 - k1k 26)  (k16k,5 - k15k,6 ) (blb22 - bl,2b2 )

Writing (5.20) as:

a , 0 1 I (5 .2 1 )

0, = 0,

Substituting (5.21) into the sliding surface equations (5.4) results in two equations for

the uncompensated CTE at steady-state:
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_ a, +r SI11V c

S14 (5.22)

0, + S,2!c

$24

Finally, we compensate the sliding surface equations to counteract (5.21) and (5.22):

a1 sv + s12r + s13 + s a + s (5.23)

0, = S,v + s22r + $231 I 
+ S 24Y + 2+ S2 1Vc

4. Simulation with Rudder Action Compensation

To analyze the effectiveness of rudder disturbance compensation, Run 23

was conducted at u = 6.0 ft/s, 0 = 2.0, and ,72 = 0.35 with a local lateral current of

1C = -1.0 ft/s. Figures 47 and 48 show Run 23 which was produced by simulation

program SDVCTELOSRR300OBSLQR.FOR (see Appendix A) and DISSPLA

plotting program PLOT1O.FOR. To easily demonstrate the effectiveness of the

compensation, the simulation starts at = 450 at way-point (0,0) headed towards the

next way-point at (1000,1000). At t = 0, the lateral current is initiated on the AUV.

The vehicle parameters oscillate slightly as the observers and controller compensate

for the step in current. It's the steady-state values that must be closely scrutinized.

The AUV settles out at approximately = 45' as desired! The rudders are both

deflected in the same direction to combat the current. The bow rudder is saturated

at 6 br = 0.4 and the stern rudder is at 6sr = 0.3. If the bow rudder did not saturate,
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the AUV would achieve a heading angle of exactly 45' . The difference in the rudder

deflections is both due to the forward-aft asymmetry of thc AUV's (actually the

SDV's) body and the coefficients in the control laws. Note that the sway velocity v

settles out at about 1.0 ft/s as predicted by (5.17).

For comparison, Run 24 on Figures 49 and 50 have been included. Run

24 was conducted with the same conditions as Run 23, but the controller in Run 24

uses heading error disturbance compensation discussed previously. Note that the

rudders have zero deflection at steady-state, but the AUV settles out at about

= 550 which is a 100 heading error. Hence in comparing Runs 23 and 24, rudder

disturbance compensation eliminates a 10' heading error.

Taking a further look at Run 23 we note again that with a lateral current

of only -1.0 ft/s, one rudder is saturated and the other is close to saturation.

Obviously, we expect the controller will be unable to compensate for a larger lateral

current. Run 25 was conducted to investigate the response of the CTE controller

with the rudder method of disturbance rejection in the presence of a larger current

of vC = -2.0 ft/s. It's interesting to note on Figures 51 and 52 of Run 25 that the

controller does the best job it can of reducing the heading error. The rudders are

deflected over, but to achieve zero cross-track-error the AUV must also have a

heading error of approximately 100 (' = 550).

Run 26, shown on Figures 53 and 54, was included for comparison with

Run 25. The controller used in Run 26 uses heading error disturbance compensation.

Note that the AUV settles out at a heading of about 4 = 650 for a heading error of
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about 200. Thus, the CTE controller with rudder disturbance compensation, although

unable to fully eliminate the heading error, does reduce it significantly.

E. CONCLUDING REMARKS

A cross-track-error guidance steering controller has been designed for the AUV

which also uses the observers designed in Chapter IV. The CTE controller effectively

follows a path in the horizontal plane. One difficulty is the criterion for a hit of a

way-point. If the distance for a hit is too small when the next leg must be reached

through a large angle, significant overshoot occurs after passing through the way-

point. If too large a distance is used when the following leg must be reached through

a shallow angle, the AUV heads for the next leg too early. Thus, the hit distance is

a compromise reached through analysis of the AUV's ordered speed and prospective

track.

It should be emphasized that in the MIMO design adopted here, the sway

velocity v assumes significant values and, therefore, becomes important in the control

law design. This is in contrast to SISO designs where v is negligibly small and can be

neglected.

Disturbance compensation was designed into the controller by adding a term

to each sliding surface. Two methods of disturbance compensation were utilized.

First, the AUV overcame the current with a heading error. The advantage of

heading error compensation is its effectiveness over a wide range of underwater
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currents. The second method of rudder compensation will keep the AUV pointed

along the track, but it's unable to compensate for lateral currents above 1.0 ft/s.

The final step of this thesis is to apply the steering and diving controllers, which

were designed separately, to the full nonlinear model.
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VI. AUV SIMULATION IN THREE DIMENSIONAL SPACE

A. INTRODUCTION

In previous chapters, simulation of the AUV was conducted with only simplified

nonlinear equations of motion. To prove the validity of the diving and steering

controllers which were designed based on these simplified nonlinear equations of

motion, control of the AUV must be simulated using the full nonlinear equations

developed by Smith, Crane, and Summey [Ref. 7]. First, the AUV will be controlled

with the diving and LOS controllers. Second the CTE controller will be used vice the

LOS controller. Finally, three dimensional path keeping will be developed and

simulated.

B. SIMULTANEOUS LOS STEERING AND DEPTH CONTROL

Figures 55 and 56 show Run 27 which was produced by program

SDV3DLOS.FOR and DISSPLA program PLOT3DLOS.FOR (see Appendix A).

The diving controller was executed with = 2.0 and r72 = 0.2, the LOS controller

with 0 = 2.0 and r2 = 0.3, and the speed controller with 0 = 1.0. Ordered speed

was uD = 6.0 ft/s and global currents were uco = -2.0 ft/s and vco = 2.0 ft/s. The hit

criterion was one vehicle length. Perfect state feedback was used.

Figures 55 and 56 show that the controllers do an excellent job of vehicle

control even during simultaneous depth and course changes. Movement of the
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control surfaces is smooth with no oscillation. Maximum vehicle roll is less than 20.

Of course, the AUV does overshoot way-point (500,500) due to the combined effect

of the small hit criterion and the vCo component of the current. The reader should

note that the simulation ends before the vehicle reaches the final ordered way-point.

The conclusion is that a combined control package containing the diving and

LOS steering controllers is effective for AUV control during simultaneous course and

depth changes.

C. SPM ,AU'tLTANEOUS CTE STEERING AND DEPTH CONTROL

Figures 57 and 58 show Run 28 which was produced by program

SDV3DCTE.FOR and DISSPLA program PLOT3DCTE.FOR (see Appendix A).

The only change from the previous run was the CTE steering controller was executed

with r 2 --: 0.35 and the hit criterion was increased to six vehicle lengths.

Figures 57 and 58 reveal that the CTE steering and diving controllers are

effective in controlling the AUV. The movement of the rudders is not as smooth as

the previous run with the LOS controller. This is primarily due to the CTE guidance

scheme which requires strong control action to achieve minimal y'. Note that the

increased control surface action results in a maximum roll angle of about 50 which is

30 larger than Run 27.

D. THREE DIMENSIONAL VEHICLE PATH KEEPING

So far, path keeping in the horizontal plane has been coupled with depth

keeping in the vertical plane. More complex obstacle avoidance and path planning
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situations may, however, require that the vehicle can accurately follow a path defined

in a three dimensional coordinate frame. To this end, we must first consider the

problem of path keeping in the vertical plane.

1. Path Keeping in the Vertical Plane

The linearized equations of motion in the verticai plane of a neutrally

buoyant symmetric vehicle with XG = X B = 0, z B = 0, and zG > 0 are:

(m-Z)V - Z = (Zq +m)uq + Zuw + Z., u2 6sp + Z6bpU 2 6bp (6.1)

(Iy-Mq)4 - = Mquq + MwUW - zomgsinO + Msu 26(6Y - A MV' = Mq + M, UW - G ' Sp (6.2)
+ M 'p 26bp

=q (6.3)

= u cosO + w sinO (6.4)

2= -u sinO + w cosO (6.5)

where the pitch angle 0 is not necessarily small, and the coordinate system is shown

in Figure 59. The assumption that Z o > 0 ensures that the vehicle is stable in roll,

which is normally the case. If 8 denotes the commanded pitch angle, positive nose

up, we rotate the coordinate system as shown in Figure 59 and we get:

Z/ = z coso + x sinl3 (6.6)
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x= -z sin 5 + x cos (6.7)

0=13 +0 (6.8)

where 0' is a small angle, defined as the deviation between the actual and the

commanded pitch angle, and z' is the cross-track-error off the assumed straight line

path. Then the linearized equations of motion in the vertical plane in the (x', z')

system of coordinates become:

6/ = q (6.9)

w, = a11uw + a 12uq + bIu 2 6 (6.10)

1 = a,1uw + a22 uq + a23 0/ + b2 u26 + d (6.11)

z' = -u 0' + w (6.12)

where we have set 6= 6, 6 bp = 0 for now, and the coefficients are given by:

(Iy - Mq)Zw + ZqM, (6.13)
(m -Z ,)(l -YM) - ZqM*

(Iy -Mq)(Zq + m) + ZqMq (6.14)
a1 2 = (m -Z,)(I -Mq) - ZqM*(
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aMZ. + (m-Z.)M. (6.15)
a 2 1 ( Z)I qZ M

(m - Z ) (ly - MO) - z4mW

al.) M* (Zq +m) + (m -ZW)Mq (6.16)
(m - Zw) (y - M4) - ZqM*

a23 = -zGmg(m - ZW)cos3 (6.17)
(m -Z)( - M - Z MV

S (IY - Mq)Z 6 + ZM 6  (6.18)
b1  = _ _ _ _ _ _ _ _ _ _

1(m- Z. )(ly - M4) - ZqM*

M"Z 6 + (m - Z.)M 6  (6.19)
(m - Z) (ly - M) - ZqM*

d = GzMg(m -4)sin (6.20)
(m - Z ) (ly - MO) - ZqM*

The sliding mode control law for system (6.9) through (6.12) is expressed as:

6 = kOi0 + k2 w + k3q + k satsgn(a) (6.21)

a = SY1 + S2W + s3 q + S4 z + s 5  (6.22)

The gains k1, k2, k3 and the sliding plane coefficients s,, s2, s3 , s4 can be computed

using either the LQR or pole placement techniques as developed in Chapter II. It

should be mentioned that since the coefficient al-3 in (6.17) depends on the

commanded pitch angle 13, the above gains depend on 13 as well. Therefore, they
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have to be recomputed every time a new angle ( is commanded. It was found,

however, that their variation in (3 is small and a constant average angle (3 can be used

in the control law design.

The extra coefficient ss in (6.22) appears because of the nonzero

metacentric height, or the constant term d in (6.11). This feedforward term s5 can

be computed from steady-state accuracy requirements. At steady-state, equations

(6.9) through (6.12) yield:

a11 d
6 = 2 adU2(623)

a 21biu 2 + a, 3b - bu 2  (6.23

= 2 .-bid 2(6.24)
a2biu2 + a13bi - allb2 i 2

-b 1ud
w = 2 a-bu 2  (6.25)a.,,U+ a 1-3bi - a~ib2u-

Equation (6.23) provides the dive plane angle that is necessary to achieve the

commanded rise or dive angle, and equations (6.24) and (6.25) reveal that this is only

possible with a nonzero heave velocity and path orientation error. Then, equation

(6.21) yields:

satsgn(o) = (a, + k1b, + k2 blu)d (6.26)
kn(a21blu 2 + a- bi - allbzu 2)

and using:
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satsgn() = _- (6.27)

together with the requirement that the cross-track-error z' reaches zero at steady-

state, we get from (6.22):

(a 1 + k b1 + k, bu)Od + k + su)b ds s  = -,- - (6.28)
5 k(a21blu2 + a23b - allb2 u 2 )

Equation (6.27) is valid if I satsgn(a) I :- 1, and this yields the critical value of k n for

stability:

(all + klb 1 + kblu)dk n _ta>. IU q3b - a b.U2(6.29)
n a21b1 1u2 + a23b1 - a11 b1 u2

The above scheme will provide the desired response once the vehicle

hydrodynamics and geometric properties are accurately known. In cases of actual

vehicle/mathematical model mismatch, a steady-state path error will develop. This

is especially true for different vehicle loading conditions which change the value of

the metacentric height from its nominal design value. An integrator in z' (with a

sufficiently large time constant to avoid undesirable oscillations) or an estimator of

z o can be incorporated into the design to ensure the required steady-state accuracy.

For typical cases of the SDV applications considered in this work, this did not seem

to be necessary since the actual steady-state path errors appear to be very small.
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This is demonstrated in Figure 60. The vehicle is initially horizontal and the

commanded way-point is located at (x,y) = (15, -15) ship lengths, which corresponds

to a 450 rise angle. Curve 1 simulates the nominal design with ZG = 0.1 ft, while

Curve 2 simulates the case where the actual ZG is three times larger than the assumed

value, and in the case of Curve 3 it is five times smaller. It can be seen that even

under such a wide variation, the actual path error is negligible.

When both bow and stern planes are acting, the linearized equations (6.9)

through (6.12) become:

= q (6.30)

a uw + a12uq + bl1U26 + b12u 2 6bP (6.31)

= a,1Luw + a22uq + b21u2 6 + b22U 2 6bp + a230' + d (6.32)

= CV + w (6.33)

and the control laws:

6s p = k110' + k 12w + k 13q + k 14 r 2sasgn(al) + kl 5r 2satsgn(a2) (6.34)

6 bp =k 2 10' + k 22 w + k23q + k24 r12satsgn(al) + k 25 r12satsgn(o,) (6.35)
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Figure 60. Path Keeping in the Vertical Plane with Stern Planes Only
(ZG = 0.1 ft (nominal), zc, 0.3 ft, and zG = 0.5 ft)
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with:

a, = S1 1 Y + S 12 W + S13 q + S 14 Z' + S1 5  (6.36)

a 2 = S210/ + $22W + s 2 3q + S2 4 Z/ + $25 (6.37)

The existence of two independent inputs can now ensure zero steady-state path

deviation with zero heave velocity and the commanded pitch angle as well. Equations

(6.30) through (6.33) yield at steady-state:

q = 0' = w = 0 (6.38)

6bl2d -(6.39)
s= (blb 22 - b 12b, 1)u 2

b1ld (6.40)
bp (bllb22 - b 12b21) 2

Then, using equations (6.34) through (6.37) we get:

S (b 12 k 25 + bilk 15 )Od (6.41)
1 ru(bllb22 - b12621)(k14k,5 - k 15 k24 )

-(blkl 4 + b 12k 24)'d (6.42)
r12u2 (bllb2 2 - b12b21 )(k 14 k25 - k15k 14 )
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and the control law is complete. Results for the SDV at u = 2.5 ft/s, using stern

planes only (Curves 1) and combined stern and bow planes (Curves 2) are presented

in Figures 61 and 62. It can be clearly seen that the application of the multiple input

sliding mode technique leads to a much better steady-state accuracy.

2. Three Dimensional Path Keeping

Cross-track-error controls in the horizontal and vertical planes can be

coupled together to provide accurate vehicle path keeping in three dimensions. The

related geometry is illustrated in Figure 63 along with some nomenclature. The

angles a H and av are the two coordinate rotation angles to align a local frame to the

desired vehicle path. At the same time, a v is the vehicle commanded pitch angle.

The horizontal plane cross-track-error y/ is controlled by the rudders while the

vertical plane cross-track-error z2 is driving the dive planes. The two coordinate

rotations are shown in Figure 64 where the horizontal plane rotation is executed first,

and then the vertical plane rotation follows. The geometric relations that describe

the above rotations are:

= arctan[ - Yo (6.43)

x' = (y - yo)sinatt + (x -xo)cosatl (6.44)

= (y - yo)cosa 1 - (x - xo)sinaH (6.45)
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Figure 61. Runs 29 and 30 - Comparison of Path Keeping in the Vertical Plane
with Stern Planes Only (Curves 1) and Sterm & Bow Planes (Curves 2)
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y'horizontal plane cross track error

z'vertical plane cross track error

Figure 63. Three Dimensional Geometry and Related Nomenclature
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Figure 64. Coordinate Rotations in Three Dimensional Space
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= arctan z D j (6.46)

X D (YD - yo)sinaH + (XD - Xo)COSaH (6.47)

X= -(z - Zo)sina v + xcosav (6.48)

Z/ = (z - zo)cosav + .'sina v  (6.49)

Results are presented for the following way-points (x, y, z) = (10, 0, 5),

(20, 5, 5), (30, -5, -3), (50, 0, -5) vehicle lengths, using one stern rudder and

independent stern and bow planes as developed before, in Figures 65 through 67.

The commanded vehicle forward speeds are 3.0, 2.0, and i.5 ft/s, respectively, and the

target distance was fixed at 2 ship lengths. The commanded and actual vehicle paths

are plotted projected on the three planes (x, y), (x, z), and (y, z). As can be seen the

above coordinate rotations provide excellent path keeping capabilities except for the

low speed of 1.5 ft/s where the dive planes cannot always provide the necessary dive

and rise moment. At such low speeds, however, the vertical thrusters are to be

turned on, thus providing additional heave force and/or pitch moment.

E. CONCLUDING REMARKS

The diving and steering controllers designed in previous chapters were

combined to perform simultaneous depth and steering control. Both the LOS and
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Figure 65. Run 31 - Three Dimensional Path Keeping at u = 3.0 ft/s
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Figure 66. Run 32 - Three Dimensional Path Keeping at u =2.0 ft/s
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Figure 67. Run 33 - Three Dimensional Path Keeping at u 1.5 ft/s
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CTE steering controllers performed satisfactorily in conjunction with the diving

controller.

The new concept of three dimensional path keeping was introduced.

Development of the concept yields a control package that allows the AUV to follow

a straight path line in three dimensional space.
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VII. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

The following are the major conclusions that can be drawn from this study:

" MIMO sliding mode controllers yield superior performance and enhanced
capabilities as compared to SISO sliding mode controllers.

" The LQR method for MIMO sliding mode control design is preferred over pole
placement because it allows the designer to choose which states to minimize
resulting in specific desired control action. However, even the LQR method
requires some experimentation to determine the best minimization matrix for
the situation. Hence, this is an impetus for prior computer simulation.

" As first proposed by Lienard [Ref. 31, the speed, diving, and steering controllers
can be designed separately - greatly simplifying the design process - and
effectively control the vehicle simultaneously.

" The multi-level diving controller based on control efficiency at different speeds
proved that it can effectively command the vehicle over the entire range of
operational speeds.

" Both the LOS and CTE steering controllers did well in controlling the vehicle.
They can be easily modified to compensate for observed underwater currents.

" Two coupled CTE controllers can command the vehicle to follow straight line
paths in three dimensional space; however, consideration must be given to the
mission planner so the ordered path is achievable. The vehicle is unable to
follow a path line that is too steep.

B. RECOMMENDATIONS

The following actions should be taken to fully utilize the research done in this

thesis:
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" Design Kalman filters to reduce noise in the state measurements.

" Develop a more accurate and detailed model for the tunnel thrusters.

" Add horizontal tunnel thrusters to the model and design a multi-level steering
controller, as was done for the diving controller.

* Develop software for switching of dive planes and rudders to ensure smooth
transition between different way-points during three dimensional path keeping.
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APPENDIX A. SUMMARY LISTING OF COMPUTER PROGRAMS

The following is a complete listing of all computer programs written and used

in this thesis in the order they were discussed. The four programs contained in

Appendices B to E are included because they are in the most general form for the

particular application. None of the DISSPLA plotting programs are included in the

Appendices because they are device dependent, but they are summarized below. All

Fortran simulation programs utilize IMSL subroutines for matrix inversion and

matrix/vector multiplication. Copies of any program used in this thesis can be

obtained from:

Professor F. A. Papoulias, Code MEPa
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943-5000

The listing follows:

SDVDIVLIN I.FOR

Fortran program that solves the simplified nonlinear heave and pitch equations
(with planes and vertical thrusters) for vi and 4 at a particular surge velocity
U.

SDVDIVPPITPSFPOLE.FOR

Fortran program that simulates the AUV at all speeds (with planes and
thrusters) in the dive plane only, via the simplified nonlinear equations of
motion. Control laws determined by pole placement. Perfect state feedback.
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SDVDIVPPT'IPSFLQR.FOR

Identical to SDVDIVPPTTPSFPOLE.FOR except the control laws are
determined by the LQR method.

DPLOT2.FOR

Fortran/DISSPLA plotting program that produces graphs from the output of
SDVDIVPPYT'PSFPOLE.FOR and SDVDIVPPTTPSFLQR.FOR.

SDVDIVPPTOBSLQR.FOR

Identical to SDVDIVPPTTPSFLQR.FOR except it has a reduced order
observer for heave velocity w.

DPLOT4.FOR

Fortran/DISSPLA plotting program that produces graphs from the output of
SDVDIVPPTTOBSLQR.FOR.

SDVSTRLIN.FOR

Fortran program that solves the simplified nonlinear sway and yaw equations
(with two rudders) for i) and f at a particular surge velocity u.

SDVLOSRR300PSFLQR.FOR

Fortran program that simulates the AUV at high speeds (with two rudders) in
the horizontal plane only, via the simplified nonlinear equations of motion.
Control laws determined by the LQR method. State space representation
determined from linearization at u = 3.00 ft/s. Pertect state feedback.
Compensated for steady-state disturbances.

PLOT7A.FOR

Fortran/DISSPLA plotting program that produces graphs from the output of
SDVLOSRR300PSFLQR.FOR.

SDVLOSRR300OBS LQR.FOR

Identical to SDVLOSRR300PSFLQR.FOR except it has a reduced order
observer for v, u., and v¢.
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PLOT&FOR

Fortran/DISSPLA plotting program that produces graphs from the output of
SDVLOSRR300OBSLQR.FOR.

SDVCTERR300OBS_LQR.FOR

Fortran program that simulates the AUV with CTE steering guidance at high
speeds (with two rudders) in the horizontal plane only, via the simplified
nonlinear equations of motion. Control laws determined by the LQR method.
State space representation determined from linearization at u = 3.00 ft/s.
Reduced order observer for v, uc, and vc. Compensated for steady-state
disturbances by heading error.

SDVCTELOSRR3000BSLQR.FOR

Identical to program SDVCTERR300OBS_LQR.FOR except that steady-state
disturbances are compensated for by rudder action.

PLOT1OFOR

Fortran/DISSPLA program that produces graphs from the output of
SDVCTERR300OBS_LQR.FOR and SDVCTELOSRR300OBS_LQR.FOR.

SDV3D LOS.FOR

Fortran program that simulates the AUV with the full nonlinear equations of
motion at high speeds only (two rudders/two planes). Combined controller
containing the diving and LOS steering control laws. Perfect state feedback.
Compensated for steady-state disturbances.

PLOT3DLOS.FOR

Fortraai/DISSPLA program that produces graphs from the output of
SDV3DLOS.FOR.

SDV3D CTE.FOR

Identical to program SDV3DLOS.FOR except the combined controller
contains the CTE steering control laws.
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PLOT3D-CTE.FOR

FortranIDISSPLA program that produces graphs from the output of

SDV3DCTE.FOR.
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APPENDIX B. MIATRIX-x LQR DESIGN PROGRAM FOR MIMO SLIDING
MODE CONTROLLERS

A=j -0.02270806, - 0.05053369, 2.5100OE- 2, 0.0;

0.00562727, - 0.06273627, -6.6760E- 2, 0.0;
0).0, 1.0, 0.0, 0.0;
1.0, 0).0, -0.375, 0.01;

13=1 0.00017068, 0.00013609;
_ 00004859, 0.00004343;

3.0, 0.0;
0.0, 0.01;

Al l=A(U1 21,11 2]);

A12=A([1 21,J3 41);
A21=A(13 41,[l 21);
A22-A(13 41,[3 41);
Bl=B(tl 21,[l 21);
INQUIRE 011
INQUIRE 022
INQUIL E Q33
INQUIRE Q44
Q=DIAGONAL(1O11 022 033 044);

QII=O(I1 21,[121);

021=0(13 41,11 21);
022=0(13 41,13 41);
QSTAR=Q22-021 'INV(Q1 1)*Q12;
ASTAR=A22 -A21 *INV(QI 1)*012;

[EVA L, KR,PJZ=REGU LATOR(ASTAR,A21,QSTAR,01 1);
C2PRIME=INV(011)*(012+A21'*P);

CIPRIME=EYE(2);

CPRIME=IClPRIME,C2PRIMEJ;
Y I GAIN=- INV(Bl )*(Al 1 1C2PRIME*A2II;
Y2GAIN=- -NV(Bl)*(Al2±C2PRIME*A22);

YG;AINrI Y IGAIN,Y2GAIN];
X(,AIN=YGiAIN

SPRIMEz=CPRIME
POLES=EVAL
NEGINVBlV-INV(BI)
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APPENDIX C. AUV DIVING SIMULATION PROGRAM; MIMO SLIDING
MODE CONTROLLER DESIGNED BY LQR METHOD; W
OBSERVED

PROGRAM SDVDIVPPTTOBS LOR

C
C PROGRAM SDVDIVPPTTOBSLQR.FOR
C
C WRITTEN BY Lr TODD D. HAWKINSON, USN
C"
C FOR AUV THESIS WORK
C
C THIS PROGRAM CONTROLS A 2-PLANE, 2-THRUSTER SDV IN THE
C VERTICAL PLANE WITH SLIDING MODE CONTROL UTILIZING PLANES
C AND THRUSTERS.
C
C SPEED IS ALSO CONTROLLED USING SLIDING MODE CONTROLLER
C DEVELOPED BY LIENARD.
C
C THIS PROGRAM OBSERVES HEAVE VELOCITY, W.
C
C THE OUTPUT OF THIS PROGRAM IS WRITTEN TO FILE, ALLOUT.DAT.
C THIS FILE IS THEN ACCESSED BY PROGRAM, DPLOT4.FOR, TO GENERATE
C OUTPUT GRAPHICS.
C
C THIS PROGRAM UTITLIZES SUBROUTINES FROM THE IMSL MATH
C LIBRARY, VERSION 1.1, (COPYRIGHT JANUARY 1989 BY IMSL, INC.).
C

C

C HEAVE CHARACTERISTICS
C

REAL ZQ,ZQDOT,ZW,ZWDOT,ZDB,ZDS,CDZ,Z.ZDOT,W,WDOT

C
C PITCH CHARACTERISTICS
C

REAL MQ,MQDOT,MWMWDOT,MDB,MDS,THE,THEDOT,Q,QDOT
C

C VEHICLE CHARACTERISTICS
C

REAL BOY,W,'T,L,XB,XG,ZB,ZG,IY,RHO,G.M,X(18),B(18),NU

C SURGE CHARACTERISTICS
C
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REAL U,UDOT,UMAX,UCF,UD,N,RE,CDO,XUDOT,XWDB,
& XWDS,XQDB,XQDS,XWW,XQQ,XWQ,XDBDB,XDSDS,SIGNU

C
C PLANE CHARACTERISTICS
C

REAL DMAX,DB,DS
C
C THRUSTER CHARACTERISTICS
C

REAL IBV,ISV,IVMAX,XBV,XSV

C SLIDING MODE CONTROLLER VARIABLES
C

REAL SI,E]TA,Sl,S2,S3,SATI,SAT2,SAT3
C
C OBSERVER VARIABLES
C

REAL ZI,WHAT
COMMON ZI

C
C PROGRAM VARIABLES
C

REAL MM(3,3),MMINV(3,3),F(3)
REAL DELT,PIE
REAL SGN
REAL VECI(18),VEC2(18)
REAL DRAGDX,DRAGXDX
REAL TIME,ZD
INTEGER I,K,,ITIER,ISC'REEN,IOUT

C
C HEAVE HYDRODYNAMIC COEFFICIENTS
C

PARAMETER(ZO=~ - 1.350E- 1, ZODOT=-6.810E-3, ZW= -3.020E- 1,
& ZWDOT=-2.430E-1, ZDB= -2.580E-2, ZDS= -7.255E-2,
& CDZ= 1.0)

C
C PITCH HYDRODYNAMIC COEFFICIENTS
C

PARAMETER(MOQ= -6.860E-2, NIQDOT=-1.680E-2, MW= 9.860E-2,
& MWI)OT=-(j.810E-3, MDB= 6.940E-3, MDS= -4.120E-2)

C
C VEHICLE CHARACTERISTICS
C

PARAMETER(BOY=12000., WT=12000., L=17.425, XB=0.0, XG=0.0,
& ZB=0.0, ZG=0.20, [Y=10000,, RHO=1.940, G=32.2.
& NUI=8.47E-4)

C
C SURGE CHARACTERISTICS
C

PARAMETER(UMAX= 6.0, XUDOT=-7.580E-3, XWDB= 9.660E-3,
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& XWDS= 4.600E-2, XODB=-2.600E-3, XQDS= 2.610E-2,
& XWW= 1.710E-1, XQQ=-1.470E-2, XWQ=-1.920E-1,
& XDBDB=-8.070E-3, XDSDS=-1.160E-2)

C
C PLANE CHARACTERISTICS
C

PARAMETER(DMAX=0.4)
C
C THRUSTER CHARACTERISTICS
C

PARAMETER(IVMAX=20.0, XBV=6.70, XSV=6.70)
C
C PROGRAM VARIABLES
C

PA RAMETER(DELT=0.0 1,PIE=3. 141592654,ITER=20000)
C
C DEFINE LENGTH X AND BEAM B TERMS FOR THE INTEGRATION
C

X(1)=- 105.9/12.
X(2)=- 104.3/12.
X (3)= -99.3 /12.
X(4)=-94.3/ 12.
X(5)=-87.3/ 12.
X(6)=-76.8/12.
X(7)=-66.3/12.
X(8)=- 55.8/12.
X(9)=72.7/ 12.

X(10I)=79.2/12.
X(I1)=83.2/12.

X(12)=87.2/ 12.
X(13)=91.2/12.
X(14)=951.2/12.

X(15)=990.2/ 12.
B(1)=1.01.212.
B( )=12.1 /12.
B(I )=10.2 112.
B(4)=75.70/ 12.
B(2)=75,70/ 12.
B(3)=75,70/ 12.
B(4)=r75.70/1l2.
B(5)=75.70/ 12.
B(6)=75.70/ 12.
B(7)=7.70/ 12.

B(1 1)=64.40/12.
B (I2)=58.16 / 12.
B1l3)=49,84/ 12.
B( 14)=38.88/ 12.
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B(1_5)-26.32112.
B(16)=18.56/12.
B(17)=12.64/ 12.
B(18)=0.00/ 12.

C
C DATA ENTRY
C

WRITE(-,)
10 WRITE(-,-) 'ENTER ORDERED SPEED IN FTISEC, UD =

READ(',') UD
IF (UD .LT. 0.0 .OR. UD .GT. U MAX) THEN

WRITE(-, *)
WRITE(*,*) 'UD MUST BE: 0.0 < UD < 6.0'
WRITE(",') 'RE -ENTER REALISTIC SPEED.'
WRITE(-,-)
GO TO 10

ENDIF
20 WRITE(',') 'ENTER ORDERED DEPTH IN FEET, ZD

READ(',') ZD
IF (ZD .LT. 0.0) THEN

WRITE(-,-*)
WRITE(*,*) 'ZD MUST BE: ZD > 0.0'
WRITE(-,') 'RE- ENTER REALISTIC DEPTH'
WRITE(',')
GO TO 20

ENDIF
WRITE(',') 'ENTER SI
READ(,') Si

40 WRITE(',') 'ENTER EITA =

READ(',-) EJTA
IF (EITA .LE. 0.0) THEN

WRITE(',')
WRITE(*,*) 'EITA MUST BE: EITA > 0.0'
WRITE(-,-) 'RE- ENTER REALISTIC EITA'
WRITE(',-)
GO TO 40

ENDIF
C
C CALCULATE THE MASS
c

M=VJ/G
C
C SET INITIAL VALUES
C

U =U D
N =U D/I0.012
DB=0 .0
DS=0.0
IBV=0.0
ISV=0.o
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w=0.0
WH AT=0 .0
Z 1=0.0
0=0.0
THE=0.0
Z=0.0
WDOT=0.0
QDOT=0.0
UDOT=0.0
THEDOT=0.0
ZDOT=0.0
TIME=0.D

C
C CALCULATE THE MASS MATRIX
C

MM(1,1)=M -(RHOI2.)*L*L*L*ZWDOT
MM(1,2)=- (M*XG+(RHO/2.)*L*L*L* L*ZQDOT)
MM(1,3)=0.0
M M(2,1 )=-(M *XG+(RHO/2)*L* L* L*L*MWDOT)
MM(2,2)=IY - (RHO/2.)*L* L*L*L* L*MQDOT
MM(2,3)=M*ZG
MM(3,1)=0.0
MM(3,2)=M *ZG
MM(3,3)=M -0.5*RHO*L*L*L*XUDOT

C
C INVERT THE MASS MATRIX
C

CALL LIN RG(3,M M,3,M MINV,3)
C
C INITIALIZE COUNTERS
C

ISCREEN=1
IOUT=l

C
C OPEN OUTPUT FILE
C

OPEN(U NIT= 15, FI LE='A LLOUT.DAT',STATUS='NEW')
WRITE(15,*) TIM E,ZL,,Z,DB,DS,IBV,ISV,W,WHAT,Q,THE* 180. /PIE, UD, U, N

C
C SIMULATION BEGINS
C

DO 1000 F1I,ITER
C
C CALCULATE THE DRAG FORCES
C

DO 50 K=1,18
U CF=(W -0 *X(K))

SGN: 1.0
IF (UCF .LT. 0.0) SGN=-1.O
VEC1( K)=B(K)*UCF*UCF-SGN
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VEC2( K)=B(K)*UCF*UCF*SGN*X(K)
50 CONTINUE

CALL TRAP(18,VEC1,X,DRAGDX)
A CALL TRAP(18,VEC2,X,DRAGXDX)

C
C RHS OF HEAVE EQUATION
C

F(l) = (0.5*RHO*L*L*ZW*U)*W + (M *U+0.5* RHO* L*L*L*ZQ*U)*Q
& +(M*ZG)*Q*Q - (0.5*RHO*CDZ)*DRAGDX
& +(WT-BOY)*COS(THE) + (0.5*RHO*L*L*U *U*ZDB)*DB
& +(0.5*RHO*LL*U*UZDS)*DS
& +(.25-0.00833333*U)*IBV
& +(0.25-0.00833333*U)*ISV

C
C RHS OF PITCH EQUATION
C

F(2) = (0.5*RHO*L*L*L*MW*U)*W
& +(0.5*RHO*L*L*L*L*MQ*U-M*XG*U)*Q - (M*ZG)*W*Q
& +(0.5*RHO*CDZ)*DRAGXDX - (XG*WIT-XB*BOY)*COS(THE)
& -(ZG*WIT-ZB*BOY)*SIN(THE)
& +(.5*RHO*L*L*L*U*U*MDB)*DB
& +(0.5*RHO*LL*L*U*U*MDS)*DS
& - XBV*(0.25 -. 0(Ix33333*U)*IBV
& +XSV*(O.25-0.00833333*U)*ISV

C
C RHS OF SURGE EQUATION
C

SIGNU=l.0
IF ( (U .LT. 0.0) AND. (N .GT. 0.0) ) SIGNU=- 1.0
IF ( (U .GT. 0.0) .AND. (N .LT. 0.0) ) SIGNU=- 1.0
RE=U*L/NU
CDO=0.00385 + I .296E- l7*(RE- 1.2E7)*(RE- I.2E7)
F(3) = 0.5* RHO* L* L*U *W*(XVADrB*DB+XWIfS*DS)

& +0.5 *RHO* L* L*L*U *Q*(XQDB *DB+XQDS*DS)
& +0.5*RHO*L*L*XWW*W*W
& +(M*XG+0.5*RHO*L*L*L*L*XQQ)*Q*Q
& +(0.5* RHO* L*L*L*XWQ- M)*W*Q
& +0.5 *RHO* L*L*U *U *(XDBDB*DB*DB+XDSDS*DS*DS)
& -(VvT-BOY)*SIN(THE)
& +0.5* RHO* L*L*CD0*(SIGNU *0.012*0.012*N*N - U *U)

WDOT = MMINV(1,1)*F(1)+MMINV(l,2)*F(2)+MMINV(1,3)*F(3)
ODOT = MMINV(2,1)*F()+MMINV(2,2)*F(2)+MMINV(2,3)*F(3)
UDOT = MMINV(3,1)*F(1)+MMINV(3,2)*F(2)+MMINV(3,3)*F(3)
THEDOT =0Q
MDOT = -U*SIN(THE) + W*COS(THE)

C
C FIRST ORDER INTEGRATION
C

W = W + DELT*WDOT
o = Q + DELT*QDOT
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U = U + DELT*UDOT
THE = THE + DELT*THEDOT
Z = Z + DELT*ZDOT
IF (Z. .LT. 0.0) Z=0.0

C
C CALCULATE THE CONTROL LAW
C

IF (U .LE. 0.75) THEN
DB=0.0
DS=0.0
CALL OBSERV1(I,U,Q,THE,Z,ZD,IBV,ISV,DELT,WHAT)
SI=l.0*WvHAT + 0.0*0 - 0.1452*THE + 0.4471*(Z-ZD)
S2=O.0*WHAT + 1.0 *0 + 0.7074*THE - O.0007*(Z-ZD)
IF (ABS(Sl) .LT. SI) SAT1=Sl/SI
IF (Si .LE. -SI) SAT1=-1.O
IF (Si .GE. SI) SATi=1.0
IF (ABS(S2) .LT. SI) SAT2=S2/SI
IF (S2 .LE. -SI) SAT2=- 1.0
IF (S2 GE. SI) SAT2=1.0
IBV = 1.2666E3 *WHAT + 6.8616E3 *Q - 0.2037E3 *TH E

& -0.3097E4*EITA*SAT1 + 0.9703E4*EITA*SAT2
ISV 1i.5299E3 *WHAT - 7.1672E3 *Q + 1.3030E3 *THE

& -0.3464E4*EITA*SAT1 - 1 .2169E4*EITA*SAT2
ELSEIF ((U .GT. 0.75) .AND. (U .LE. 1.75)) THEN

CALL OBSERV2(I,U,Q,THE,Z,ZD,DB,IBV,DELT,W-AT)
Si=1.0*WHAT + 0.0*0 - 0.0735*THE + 0.0678*(Z-ZD)
S2=0.O*WHAT + 1.0*0 + 1.0855*THE - 0.0735*(Z-ZD)
IF (ABS(S1) .LT. SI) SATI=Si!'SI
IF (SI .LE. -SI) SATi=- 1.0
IF (Si .GE. SI) SATi=I.0
IF (ABS(S2) .LT. SI) SAT2=S2/SI
I F (S2 .LE. -SI) SAT2= -1.0
IF (S2 .GE. SI) SAT2=1.0
DB = 0.005iE3*VWHAT - 0.0818E3*Q - 0.0023E3*THE

& -0.00i6E3*EITA*SAT1 - 0.0937E3*EITA*SAT2
IBV = -0.i347E3*WrHAT + 3.3747E3*Q + O.2712E3*THE

& -3.3095E3*EITA*SATI + 2.9370E3*EITA*SAT2
DS=-DB
IF (U .LT. 1.25) DS=0.0
ISV=IBV
IF (U .GT. 1.25) ISV=O.0

ELSE
lB V=0 .0
ISV =0.0
CALL OBSERV3(1,U,Q,THE,Z,ZD,DB,DS,DELT,WHAT)
Sl=l.0*WHAT + 0.0*0 - 0.0945*THE + 0.0328*(Z-ZD)
S2=0.O*WHAT + 1.0*0 + 1.3127*THE - 0.0945*(Z-ZD)
IF (ABS(S1) .LT. SI) SATI=S1/Sl
IF (S1 .LE. -SI) SATL=- 1.0
IF (S1 .GE. SI) SAT1=1.0
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IF (ABS(S2) .LT. SI) SAT2=S2/SI
IF (S2 .LE. -SI) SAT2=- 1.0
IF (S2 .GE. SI) SAT2=1.0

A DB = - 1.2124*WHAT - 17.7554*0 - 6.3692*THE
& +9.2671 *EITA*SAT1 - 18.1220*EITA*SAT2

DS = -0.6568*WHAT + 4.4622*0 + 2.3181 *THE
& +1.7528*EITA*SAT1 + 8.3426*EITA*SAT2

ENDIF
C
C SPEED CONTROLLER
C

S3=U-UD
IF (ABS(S3) .LT. SI) SAT3=S3/SI
IF (S3 .LE. -SI) SAT3=-1.0
IF (S3 .GE. SI) SAT3=1.0
N=- 1153.9*SAT3 + 83.33*U

C
C CHECK FOR SATURATION
C

IF (DB .GT. DMAX) DB=DMAX
IF (DB .LT. - DMAX) DB=-DMAX
IF (DS .GT. DMAX) DS=DMAX
IF (DS .LT. -DMAX) DS=-DMAX
IF (IBV .GT. IVMAX) IBV=IVMAX
IF (IBV IT. - IVMAX) IBV=-IVMAX
IF (ISV .GT. IVMAX) ISV=IVMAX
IF (ISV .LT. -IVMAX) ISV=-IVMAX
IF (N .GT. 500.) N=500.
IF (N .LT. -500.) N=-500.

C
C PRINT TO SCREEN
C

IF (ISCREEN .EQ. 100) THEN
TIME=I/ 100.
WRITE(*,900) TIME,ZD,Z,W,WHAT

900 FORMAT(' TIME= ',F6.2,1IX,'ZD= ',F6.2,1IXZ
& F8.4,IX,'W= ',F7.4,lX,'WHAT= ',F14.7)

ISCREEN=0
ENDIF

C
C PRINT TO FILE
C

IF (lOUT .EQ. 10) THEN
TIME=I/ 100.
WRITE(15,') TIME,ZD,Z,DB,DS,IBV,ISV,W,WHAT,Q,

& THE*180./PIE,UD,U,N
IOUT=0

ENDIF
ISCREEN=ISCREEN+l
IOUT=IOUT+1
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1000 CONTINUE
CLOSE(U NIT=15)
STOP
END

C
C NUMERICAL INTEGRATION ROUTINE USING THE TRAPEZOIDAL RULE
C

SUBROUTINE TRAP(N,A,B,OUT)
INTEGER N,N1,l
REAL A(N),B(N),OUT,OUTI
Nl=N-1
OUT=0.0
DO 10 1=1,Nl

OUTi = 0.5*(A(I) + A(1+1)) *(B(1+1) - B(I))
OUT = OUT + OUTI

10 CONTINUE
RETURN
END

C
C OBSERVER FOR THE SPEED RANGE: 0.00 < U < 0.75
C

SUBROUTINE OBSERV1(I,U,Q,THE,Z,ZD,IBV,ISV,DELT,WHAT)
INTEGER I
REAL U,Q,THE.Z,ZD,IBV,ISV,DELT,WHAT
REAL ZI,Z1DOT
COMMON Zi
REAL LI,L2,L3
REAL F
REAL GL,G2,G3
REAL H1,H2
REAL All ,A12,A13,BllI,Bl2,A-21,A22,A23,B21 ,B22,A32,A41,A43
REAL 51
PARAMETER(Sl=-0.9)
Al 1=-0.060554828U
A12=-0.134756503*U
A 13= 0.02510025
Bl= 6.913620E-04*(0.25000000-8.33333333E.03*U)
B12= 5.5l2506E-04*(0.25000000-8.33333333E-03*U)
A21= 0.015006049*U
A22=-0.167296702*U
A 23= -0.06676024

B21=- 1 .968203E-04*(0.25000000-8.33333333E-03*U)
B22= I .759190E-04*(0.25000000- 8.33333333E-OY-U)
A32= 1.0
A41= 1.0
A43=-U
LI=(A11 -S1)/(A21+A41)
L2=0.0
L3=LI
F=Al - L1*A21 -L3*A41
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HI=BIl-L1*B21
H2=B12..L1*B22
G1=Al2-L1*A22- L2*A32±F*L1
G2=A13- Ll*A23- L3*A43+F*L2
G3=F*L3
ZlDOT=F*ZI+Gl *Q+G2*THE+G3*(Z..ZD)+Hl *IBV+H2*ISV
ZI=Zl+ZIDOT*DELT
WHAT=Ll *Q+L2*THE+L3*(Z-ZD)+ZI
IF (I .LE. 1000) WHAT=0.0
RETURN
END

C
C OBSERVER FOR THE SPEED RANGE: 0.75 < U < 1.75
C

SUBROUTINE OBSERV2(1,U,Q,THE,Z,ZD,DB,IBV,DELT,WHAT)
INTEGER I
REAL U,Q,THE,Z,ZD,DB,IBV,DELT,WHAT
REAL Zl,Z1DOT
COMMON Zi
REAL Ll,L2,L3
REAL F
REAL GI,G2,G3
REAL Hl,H2
REAL All ,A12,A13,B1 ,B12,A21,A22,A23,B21,B22,A32,A41,A43
REAL 51
PARAMETER(Sl=-0.32)
Al l=-0.060554828*U
A]2=-0.134756503*U
A 13= 0.025 10025
Bll=-0.005093606*U*U
B12= 6.913620E-04*(0.25000000-8.33333333E-03*U)
A21= 0.015006049*U
A22=-0.167296702*U
A23= -0.06676024

B21= 0.001070202*U*U
B22=- 1.968203E-04*(0.25000000-8.33333333E-03*U)
A32= 1.0
A41= 1.0
A43=-U
L1=(A II-Sl)/(A21+A41)
L2=0.0
L3=L1
F=A11- L1*A2l-L3*A41
Hl=Bl1-Ll*B2l
H2=B12-L1*B22
G1=A12- LI*A22- L2*A32+F*L1
G2=A13-Ll*A23- L3*A43+F*L2
G3=F*L3
ZIDOT=F*Zl +GI Q+G2*THE+G3*(Z-ZD)+H1 DB+H2*IBV
Z1=Zl+ZlDOT*DELT
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W,,HAT=Ll *Q+L2*THE+L3*(Z- ZD)+Z1
IF (I .LE. 1000) WHAT=0.0
RETURN
END

C
C OBSERVER FOR THE SPEED RANGE: U > 1.75
C

SUBROUTINE OBSERV3(I,U,Q,THE,Z,ZD,DB,DS,DELT,WHAT)
INTEGER]I
REAL U,Q,THE,Z,ZD,DB,DS,DELT,WHAT
REAL Z1,ZIDOT
COMMON Zi
REAL L1,L2,L3
REAL F
REAL GI,G2,G3
REAL H1,H2
REAL Al l,A12,A13,BI1,B12,A21,A22,A23,B21,B22,A32,A41,A43
REAL Si
PARAMETER(S1=-0.88)
A11=.0.060554828*U
Al2=-0.134756503*U
A 13= 0.02510025
BI 1=-0.005093606*U*U
B12=-O.011064514*U *U
A21= 0.015006049*U
A22=-0.167296702*U
A23=-0.06676024
B2 I= 0.00 1070202* U* U
B 22= - 0.005658107 U * U
A32= 1.0
P.41= 1.0
A43=-U
LI=(AII -S1)I(A21+A41)
L2=0.0
L3=LI
F=AI I - LA21-L3*A41
H1=B11-L1*B21
H2=B12-L1*B22
G1=A12-L1 *A22- L2*A32+F*LI
G2=A13- LPA23 L3*A43+~F*L2
G3=F*L3
ZIDOT=F*ZI +61*Q+G2*THE+G3*(Z- ZD)+H I*DB+H2*DS
ZI=ZI+Z1DOT*DELT
WHAT=LI *Q+L2*THE+L3*(Z- ZD)+Z1
IF (I LE. 1000) WHAT=0.0
RETURN
END
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APPENDIX D. AUV STEERING SIMULATION PROGRAM; MIMO SLIDING
MODE LOS CONTROLLER DESIGNED BY LQR METHOD;
DISTURBANCE REJECTION; V, Uc, AND Vc OBSERVED

PROGRAM SDVLOSRR300OBSLQR

C
C PROGRAM SDVLOSRR300OBS_LQR.FOR
C
C WRITTEN BY LT TODD D. HAWKINSON, USN
C
C FOR AUV THESIS WORK
C
C THIS PROGRAM CONTROLS A 2 RUDDER SDV WITH A SLIDING MODE
C LINE-OF-SIGHT CONTROLLER FOR STEERING.
C
C SPEED IS ALSO CONTROLLED USING A SLIDING MODE CONTROLLER
C DEVELOPED BY LIENARD.
C
C THE EQUATIONS HAVE BEEN LINEARIZED AT U = 3.0 FT/S TO OBTAIN
C THE SLIDING MODE CONTROL LAWS.
C
C THE PROGRAM HAS OBSERVERS FOR V, VC, AND UC.

C THE OUTPUT OF THE PROGRAM IS WRITTEN TO FILES, LOSCURR.DAT,
C LOSWAYPT.DAT, LOSALLOUT.DAT. THESE FILES ARE THEN ACCESSED
C BY THE DISSPLA PLOTTING PROGRAM, PLOT8.FOR, TO GENERATE
C OUTPUT GRAPHICS.
C
C THIS PROGRAM UTILIZES SUBROUTINES FROM THE IMSL MATH

C LIBRARY, VERSION 1.1, (COPYRIGHT JANUARY 1989 BY IMSL, INC.).
C

C
C YAW CHARACTERISTICS
C

REAL NR,NRDOT,NV,NVDOT,NDBR,NDSR,CDY,R,RDOT,PSI,PSIDOT,

& PSIDX,PSIX
C
C SWAY CHARACTERISTICS
C

REAL YR,YRDOT,YV,YVDOT,V,VDOT,YDBR,YDSR
C
C SURGE CHARACTERISTICS
C
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REAL U,UMAX,UD,N,RE,ETA,CDO,XPROP,XUDOT,XVR,XRR,XRDBR,
& XRDSR,XVV,XVDBR,XVDSR,XDBRDBR,XDSRDSR,SIGNU,UDOT

C
C RUDDER CHARACTERISTICS
C

REAL DMAX,DBR,DSR
C
C SLIDING MODE CONTROL VARIABLES
C

REAL SI,EITA,SSI ,SS2,SATI ,SAT2,SS3,SAT3
C
C VEHICLE CHARACTERISTICS
C

REAL WT, L,X G,YG,IZ, RHO, G, M,X(18),H(18),N U
C
C NAVIGATOR VARIABLES
C

REAL UCO,UC,VCO,VC
REAL TARGET,PSID,DAWAY,ALPHA
REAL XD,XD1,XD2,XPOS,XCURRXCTE,YD,YD1,YD2,YPOS,YCU RR,YCTE
REAL XDOT,YDOT
INTEGER IWAY,INAV

C
C OBSERVER VARIABLES
C

REAL Al I ,A 12,A2l.A22,B113B12,1321,1322, L12, L23, L34, VHAT, UCHAT.
& VCHAT,UCOHAT,VCOHAT,Z1,Z2,Z3,ZlDOT,Z2DOT,Z3DOT,Sl 52,S3

C
C PROGRAM VARIABLES
C

REAL MM(3,3),MMINV(3,3).F(3),OUT(3)
REAL DELT
REAL PIE
REAL SGN
REAL VEC1(18),VEC2(18)
REAL DRAGDX,DRAGXDX,UCF
REAL TIME
INTEGER I,JTER,ISCREEN,K,IOUT

C
C YAW HYDRODYNAMIC COEFFICIENTS
C

PARAMETER(NR= -1l.640E-2, NRDOT=-3.400E-3, NV= -7.420E-3,
& NVDOT= 1.240E-3, NDBR= 1.290E-2, NDSR= -1.290E-2,
& CDY= 3.500E-l1)

C
( SWAY HYDRODYNAMIC COEFFICIENTS
C

PARAMETER(YR= 2.970E-2, YRDOT= 1.240E-3, YV= -9.310E.-2,
& YVDOT=-5.550E-2, YDBR= 2.730E-2, YDSR= 2.730E-2)

C
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C SUR~GE HYDRODYNAMIC COEFFICIENTS
C

PARAMETER(LJMAX= 6.0 ,XUDOT= -7.580E-3, XVR= 1.890E-2,
& XRR= 4.010E-3, XRDBR= 8.180E-4, XRDSR=-8.180E-4,
& XVV= 5.290E-2, XVDBR= 1.730E-3, XVDSR= 1.730E-3,
& XDBRDBR=- 1.010E-2, XDSRDSR=- 1.01OE-2)

C
C RUDDER CHARACTERISTICS
C

PARAMETER(DM AX=0.4)
C
C VEHICLE CHARACT"iRISTICS
C

PARAMETER(WT=12000., L=17.425, XG=0.0, YG~u.C', IZ=10000.,
& RHO=1,940, G=32.2, NU=8.47E-4)

C
C NAVIGATOR VARIABLES
C

PA RAM ETER (TA R GET=8 .7 1250)
C
C OBSERVER VARIABLES
C

PARAMETER(AI 1=-0.042t?7797, -,12---0.351578237,
& A21=-0.002794897, A22=-0.09841587C,
& BI i- 0.012974539, B12= 0.0' 513052,
& B21= 0.0044216:8, B22=-0.004244119,
& SI= - 1.0, S2= - 1.1,
& S3= - 1.2)

C PROGRAM VARIABLES
C

PA RAM ETER(PIE=3. 141 593,DFLT=0.0 1,ITER=50000)
C
C DFFINE LENGTH X AND HEIGHT TERMS FOR THE INTEGRATION
C

X (1)= - 105.9/12.
X(2)=- 104.3/12.
X(3)=-99.3/ 12.
X(4)'=-94.3/ 12.
X(5)=-87.3/12.
X(6)=-76.8/12.
X(7)=-66.3/ 12.
X(8)=-55.8/ 12.

X(9)-72.712.
X(10)=70.2/12-.
X( 1l)=83.2/ 12.
X (I Z=8 7.2 /12.
X(13)=91.2/ 12.
X:(14)=95.21 12.
X(15)=99.2/12.
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X( 16)=10 1.2/12.
X(17)=102.1/ 12.
X(18)=103.2/ 12.
H(1)=0.0/ 12.
H(2)=2.28/ 12.
H(3)=8.24/ 12.
H(4)=13.96/ 12.
H(5)=19.76/ 12.
H(6)=25.10/ 12.
H(7)=29.36/ 12.
H(8)=31.85/ 12.

H(10)=30.00/ 12.
H(1 1)=27.84/12.
H(12)=25.12/ 12.
H(13)=21.44/ 12.
H(14)=17.12/ 12.
H(15)=12.00/ 12.
H (16 )=9.12 /12.
H(17)=6.72/ 12.
H(18)=0.00/ 12.

C
C DATA ENTRY
C

WRITE(*,')
10 WRITE(*,*) 'ENTER ORDERED SPEED IN FT/SEC, UD T?

READ(*,*) UD
IF (UD .LT. 0.0 -OR. UD .GT. UMAX) THEN

WRITE(*,*)
WRITE(*,*) 'UD MUST BE: 0.0 <= UD <= 6.0'
WRITE(*,*)' RE- ENTER REALISTIC SPEED...'
WRITE(*,*)
GO TO 10

ENDIF
WRITE(*,*)
WRITE(*,') 'ENTER GLOBAL CURRENTS, UCO,VCO =?'
READ(*,*) UCO,VCO
OPEN(U NIT= 19, FI LE='LOSCU RR.DAT',STATUS=' NEW')
WRITE(19,25) UCO,VCO

25 FORMAT(F6.3,1X,F6.3)
CLOSE(UNIT=19)
WRITE(*,*)

30 WRITE(*,*) 'ENTER CONTROLLER SI =

READ(*,*) SI
WRITE(*,*)

40 WRITE(*,*) 'ENTER CONTROLLER EITA =

READ(,') EITA
IF (ETTA .LE. 0.0) THEN

WRITE(*,*)
WRITE(*,*) 'EITA MUST BE: ETTA > 0.0'
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l. ITE(-,) 'RE- ENTER REALISTIC EITA'
WRITE(',')
GO TO 40

ENDIF
WRITE(',-)
WRITE(-,-) 'INITIAL HEADING IS 000 DEGREES (DUE NORTH)'
WRITE(-,') 'INITIAL POSITION IS (0.0,0.0)'
WRITE(-,') 'ENTER FIRST WAY-POINT: X,Y =?'
READ(-,-) XD,YD

C
C SET INITIAL STARTING POSITION
C

X Dl=0.0
Y Dl=0.0
XD2=XD
YD2=YD
OPEN(U NIT=20,FILE='LOSWAYPT.DAT',STATUS='NEW')
WRITE(20,*) XDI,YD1
WR1TE(20,*) XD2,YD2

C
C CALCULATE THE MASS
C

M=WT/G
C
C SET INITIAL VALUES
C

ALPHA=ATAN2((YD2-YDI),(XD2 -XD1))

UC=UCO*COS(A LPHA)+VCO*SI N(ALPHA)
VC=VCO*COS(ALPHA)- UCO*SIN(ALPHA)
U=UD
N=UD/0.012
DBR=0.0
DSR=0.0
V=0.0
R =0.0
PSI=0.0
PSID=0.0
X P05=0.0
YPOS=0 .0
XCURR=XPOS
YCURR=YPOS
XCTE=0.0
YCTE=0.0
TIME=0.0
VH-AT=0.0
U CH AT=0.0
VCHAT=0.0
UCOHAT=0.0
VCOHAT=0.0
Z 1=0.0



Z2=0.0
Z3=0.0
Z1DOT=0.0
Z2DOT=0 .0
Z3DOT=0 .0

C
C CALCULATE THE MASS MATRIX
C

MM(1, 1)=(M -0.5' RHO' L*L-LXUDOT)
MM(1,2)=0.0
MM(1,3)=- M*YG
MM(2,1)=O.0
MM(2,2)=(M -0.5* RHO' L-L*L*YVDOT)
MM(2,3)=(M*XG-0.5*RHO*L*L*L*L*YRDOT)
MM (3,1 )= -M *Y G
MM(3,2)=(M *XG-.05*RHO*L*L*L*L*NVDOT)
MM(3,3)=(IZ-0.5*RHO*L*L*L*L*L*NRLOT)

C
C INVERT THE MASS MATRIX USING IMSL LIBRARY SUBROUTINE

CALL LINRG(3,MM,3,MMINV,3)
C
C INITIALIZE THE COUNTERS
C

ISCREEN=l
INAV=0
IWAY=l
IOUT=1

C
C OPEN OUTPUT FILES
C

OPEN(U NIT=18,FILE='LOSALLOUT.DAT',STATUS='NEW')
WRITE(18,*) TIME,XPOS,YPOS,PSID,PSI,DBR,DSR,UD,U,V,VHAT,R,

& UC,UCHAT,VC,VCHAT
C
C SIMULATION BEGINS
C

DO 1000 I=1,ITER
C
C CALCULATE THE DRAG FORCES
C

DO 50 K=1,18
U CF=( V+R *X (K))
SGN=1.0
IF (UCF .LT. 0.0) SGN=-1.0
VECI(K)=H(K)*UCF'UCF*SGN
VEC2(K)=H(K)-UCF*UCF'SGN*X(K)

50 CONTINUE
C,,iLL TRAP(18,VECI,,X.DRAGDX)
CALL TRAAr(18,VEC2,X,DRAGXDX)
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C
C RHS OF SURGE EQUATION
C

SIGN U=1.0
IF ( (U .LT. 0.0) .AND. (N .GT. 0.0)) SIGNU=-I1.0
IF ((U .GT. 0.0) .AND. (N .LT. 0.0) )SIGNU=- 1.0
RE=U*L/NU
CDO=0.00385 + I .296E- 17*(RE 1 .2E7)*(RE- 1.2E7)
F(1)=0.5-RHO*L-L-U*V*(XVDBR*DBR + XVDSR*DSR)

& + 0.5*RHO*L*L*L*U*R*(XRDBR*DBR + XRDSR*DSR)
& + 0.5*RHO*L*L*XVV*V*V
& + (M*XG + 0.5*RHO*L*L*L*L*XRR)*R*R
& + (M + 0.5*RHO*L*L*L*XVR)*V*R
& + 0.5*RHO*L*L*U*U*(XDBRDBR*DBR*DBR + XDSRDSR*DSR*DSR)
& + 0.5* RHO* L*L*CDO*(SIGNU *0.012*O.012*N*N - U*U)

C
C RHS OF SWAY EQUATION
C

F(2)=0.5*RHO*L*L*YV*U*V
& + (0.5*RHO*L*L*L*YR - M)*U*R
& + M*YG*R*R
& + 0 5*RHO*L*L*U*U*(YDBR*DBR + YDSR*DSR)
& -0.5*RHO*CDY*DRAGDX

C
C RHS OF YAW EQUATION
C

F(3)=0.5*RHO*L*L*L*NV*U *V
& + (0.5*RHO*L*L*L*L*NR*U - M*XG*U)*R
& - M*YG*V*R
& + 0.5*RHO*L*L*L*U*U*(NDBR*DBR + NDSR*DSR)
& - 0.5*RHO*CDY*DRAGXDX

C
C DEFINITION
C

PSIDOT=R
C
C MULTIPLY INVERTED MASS MATRIX AND F VECTOR

CALL MURRV(3,3,MMINV,3,3,F,1,3,OUT)
UDOT=OUT(l)
VDOT=OUT(2)
RDOT=OUT(3)
X DOT=UCO+U*COS(PSI)- V SIN(PSI)
YDOT=VCO+U *SIN(PSI)+V*COS(PSI)

C
C FIRST ORDER INTEGRATION
C

U=U + DELT*UDOT
V=V + DELT*VDOT
R=R + DELT*RDOT
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PSI=PSI + DELT*PSIDOT
C
C MAKE PSI TO BE: -180 <PSI <=180 DEG;REES
C

IF (PSI .GT. PIE) THEN
PSI=PSI - 2.0*PIE

ELSEIF (PSI .LE. - PIE) THEN
PSI=PSI + 2.O*PIE

ENDIF
XPOS=XPOS+DELT *XDOT
YPOS=YPOS+DELT *YDOT

C
C CHECK IF TIME FOR NAV UPDATE
C

INAV=INAV+l
IF (INAV .NE. 1) GO TO 80
INAV=0
XCURR=XPOS
YCU RR=YPOS
DAWAY=SQRT((XCURR -XD)**2 + (YCUPRRYD)**2)

C
C CHECK DISTANCE TO WAY-POINT
C

IF (DAWAY .LT. TARGET) THEN
C
C MISS DISTANCE TO SCREEN, ENTER NEW WAY -POINT,
C CA LCU LATE NEW ALPHA, UCHAT, VCHAT, XCTE, YCTE,Z2,Z3
C

WRITE(',')
WRITE(*,60) IWAY

60 FORMAT(' WAY -POINT #',11,' REACHED.')
WRITE(*,65) DAWAY

65 FORMAT(' DAWAY = ',F8.3,' FEET')
UCOHAT=UCHAT*COS(ALPHA)- VCHAT*SIN(ALPHA)
VCOHAT=VCHAT *COS(A LPHA)+U CHAT *SI N(A LPHA)
i7WAY=IWAY+1
WRITE(*,70) [WAY

70 FORMAT(' ENTER WAY-POINT #' ,11,': X ,Y T)
READ(*,*) XD,YD
XD1=XD2
YDI=YD2
XD2=XD
YD2=YD
WRITE(20,*) XD2,YD2
ALPHA=ATAN2((YD2- YD1),(XD2- XD1))
UC=UCO-COS(ALPHA)+VCOOSI N(ALPHA)
VC=VCO*COS(ALPHA)-UICO*SIN(ALPHA)
UCHAT=U COHAT*COS(ALPHA)+VCOHAT*SI N(ALPHA)
VCHAT=VCOHAT*COS(A LPHA) -UCOHAT*SI N(A LPHA)
XCTE=(YCU RR -YD1)*SIN(ALPHA)
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& +(XCURR -XD1)*COS(ALPHA)
YCTE=(YCU RR -YD 1)*COS(ALPHA)

& -(XCURR -XD1)*SIN(ALPHA)
Z2=VCHAT+S2*YCTE
Z3=UCHAT+S3 *XCTE+U *COS(PSI - ALPHA)

ENDIF
C
C CALCULATE NEW PSID DUE TO CHANGE OF XD,YD AND/OR
C XCURR,YCURR
C
80 PSID=ATAN2((YD-YCURR),(XD- XCURR))

XCTE=(YCURR -YDI)*SIN(ALPHA)+(XCU RR -XDI )*COS(ALPHA)
YCTE=(YCURR-YD1)*COS(ALPHA)-(XCURR- XD1)*SIN(ALPHA)

C
C CALCULATE THE QUICKEST ROUTE PSID
C

IF((PSI .GE. 0.0 .AND. PSI .LE. PIE) .AND.
& (PSID .GT. -PIE .AND. PSID .LT. PSI-PIE)) THEN

PSID=PSID + 2.0*PIE
ELSEIF((PSI GT. - PIE .AND. PSI .LT. 0.0) .AND.

& (PSID .GT. P ;A+PIE .AND. PSID .LE. PIE)) THEN
PSID=PSID - 2.0*PIE

ENDIF

C OBSERVERS FOR SWAY VELOCITY AND CURRENT VELOCITIES

L12=(A11*U-Sl)/(A21*U)
L23=-S2
L34=-S3
Z1DOT=S1*Z1 + (A12*U-Ll2*A22*U+SI*Ll2)*R

& + (Bl1-B21*L12)*U*U*DBR + (Bl2-B22*L12)*U*U*DSR
Z2DOT=S2*Z1 + 2*Z2 - L23*U *SIN(PSI- ALPHA) + S2*Ll2*R

& + S2*L23*YCTE
Z3DOT=S3*Z3 - S3*S3*XCTE

C
C FIRST ORDER INTEGRATION
C

Zl=ZI+DELT*Z1DOT
Z2=Z2+DELT*Z2DOT
Z3=Z3+DELT*Z3DOT

C
C FINAL OBSERVER EQUATIONS
C

VHAT=L12*R + ZI
VCHAT=L23*YCTE + Z2
UCHAT=Z3 - S3*XCTE - U *COS(PSI -ALPHA)

C END OBSERVERS

C
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C CALCULATE THE CONTROL LAWS
C

IF (VC/U .GT. 1.0) THEN
ARG=1.0

ELSEIF (VC/U .LT. -1.0) THEN
ARG=- 1.0

ELSE
ARG=VC/U

ENDIF
SS1=1.0*v
SS2-1. 0*R + 0.5*(PSI -PSID) + 0.5*ASIN(ARG)
SS3=U -UD
IF (ABS(SS1) .LT. SI) SAT1=SS1/SI
IF (SS1 .LE. -SI) SATI=- 1.0
IF (551 .GE. SI) SATI=1.0
IF (ABS(SS2) .LT. SI) SAT2=SS2/SI
IF (SS2 .LE. -SI) SAT2=-1.0
IF (SS2 .GE. SI) SAT2=1.0
IF (ABS(SS3) .LT. 1.0) SAT3=SS3/1.0
IF (SS3 .LE. - 1.0) SAT3= -1.0
IF (SS-;.GE. 1.0) SAT3=1.O
DBR= 0.6642*VHAT + 2.2219*R - EITA*4.4499*SATI

& - EITA*12.0713*SAT2
DSR= 0.4725*VHAT + 7.6752*R - EITA*4.6361*SATI

& + EITA*13.6037*SAT2
N=- 1153.9*SAT3 + 83.33*U

C
C CHECK FOR SATURATION
C

IF (DBR .GT. DMAX) DBR=DMAX
IF (DBR .LT. -DMAX) DBR=-DMAX
IF (DSR .GT. DMAX) DSR=DMAX
IF (DSR .LT. -DMAX) DSR=-DMAX
IF (N .GE. 00.0) N=500.0
IF (N .LE. -500.0) N=-500.0

C
C OUTPUT
C

IF (PSID .LT. 0.0 .AND. PSID .GT. - 2.0*PIE) THEN
PSIDX=(PSID+2.O PIE)* 180.0/ PIE

ELSE
PSIDX=A"SID * 180.0 /PIE

ENDIF
IF (PSI .LT. 0.0 .AND. PSI .GT. - PIE) THEN

PSIX=(PSI+2.O*P[E)*180.0/ PIE
ELSE

PSIX=PSI* 180.0/PIE
ENDIF
IF (ISCREEN .EQ. 200) THEN

WRITE(*,90) PSIDX,PSIX,XPOS,YPOS
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90 FORMAT(' PSI D=',F9.4,2X,'PSI=', F9.4,2 X,
& 'XPOS= 'F8.2,2X,'YPOS= ',F8.2)

ISCREEN=0
ENDIF
IF (lOUT .EQ. 20) THEN

TIME=I/ 100.
WRIJI E(18,*-) TIMEXPOS,YPOS.PSIDX,PSIX,DBRDSR,

& UD,U,V,VHAT,R,UC,UCHAT,VC,VCHAT
IOUT=0

ENDIF
IOUT=IOUT+l
ISCREEN=ISCREEN+1

1000 CONTINUE
C-LOSE(U NIT= 18)
CLOSE(U NIT=20)
STOP
END

C
C NUMERICAL INTEGRATION ROUTINE USING THE TRAPEZOIDAL RULE
C

SUBROUTINE TRAP(N,A,B,OUT)
INTEGER N,Nl,I
REAL A(N),B(N),OUT,OUT1
NI=N-1
OUT=0.0
DO 10 I=1,Nl

OUTL = 0.5 *(A(I) + A(1+1)) *(B(1+1) -B(I))

OUT = OLUT + OUTI
10 CONTINUE

RETURN
END
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APPENDIX E. AUV STEERING SIMULATION PROGRAM; MIMO SLIDING
MODE CTE CONTROLLER DESIGNED BY LQR METHOD;
DISTURBANCE REJECTION; V, Uc, AND Vc OBSERVED

PROGRAM SDVCTERR300OBSLOR

C
C PROGRAM SDVCTERR300OBSLQR.FOR
C
C WRITTEN BY LT TODD D. HAWKINSON, USN
C
C FOR AUV THESIS WORK
C
C THIS PROGRAM CONTROLS A 2 RUDDER SDV WITH A SLIDING MODE
C CROSS-TRACK-ERROR CONTROLLER FOR STEERING.
C
t_ SPEED IS ALSO CONTROLLED USING A SLIDING MODE CONTROLLER

C DEVELOPED BY LIENARD.
C
C THE EQUATIONS HAVE BEEN LINEARIZFD AT U = 3.0 FT/SEC TO OBTAIN
C THE SLIDING MODE CONTROL LAWS.
C
C THE OUTPUT OF THE PROGRAM IS WRITTEN TO FILES, CTECURR.DAT,
C CTEWAYPT.DAT, LOSALLOUT.DAT. THESE FILES ARE THEN ACCESSED
C BY THE DISSPLA PLOTTING PROGRAM PLOTI0.FOR. TO GENERATE
C OUTPUT GRAPHICS.
C
C THIS PROGRAM UTILIZES SUBROUTINES FROM THE IMSL MATH
C LIBRARY, VERSION 1.1, (COPYRIGHT JANUARY 1989 BY IMSL, INC.).
C
C THE PROGRAM HAS 3 OBSERVEPS FOR V. VC, AND IIC.
C

C
C YAW CHARACTERISTICS
C

REAL NR,NRDOT,NV,NVDOT,NDBR,NDSR,CDY,R,RDOT,PSI,PSIDOT,

& PSIX
C
C SWAY CHARACTERISTICS
C

REAL YR,YRDOT,YV,YVDOT,V,VDOT,YDBR,YDSR
C
C SURGE CHARACTERISTICS
C
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REAL UI,UMNAX,LID,,NRE,ETA.C'DO.XPROP,XLJDOT.X~VR.XRR.XRDBR,
& XRDSRXVV,'XV"DBR.X VDSR,XDBRDBRXDSRDSR,SiG;NULDOT

C
C RUDDER CHARACTERISTICS
(j

REAL DNIAX,DBRDSR
CI
C SLIDING IMODE CONTROL VARIABLES
C

REAL SI,EITA,SS1.SS2,SATI.SAT2.SS3,SAT3
REAL Kl1.K12,KI3,Kl4,Kl5.K16K2],K22,K23K24,K25.K20
REAL S11.S12,S'13,S14.521,S2" )S23S24

C
C VEHICLE CHARACTERISTIC'S
C

REAL \W,L.XG.YGJZ.RHOG, MX(18).H(18).NUi
C
C NAVIGATOR VARIABLES

REAL UCO.IJC,'VCOVC
REAL TARG;ET.DAWkAY,ALPHA
REAL XDXDI.XD2,X POS. X CITRR.XC-TE.Y'D.YDI.YD2,YPOSYCLRR,Y'CTE

REAL XDOT,YDOT
INTEGER IWAY.INA~V

C
C OBSERVER VARIABLES
C

REAL Al I.AI2.A21,A22,B1 1.B12.BZI.B2XL12.L23,L34.VHAT UjCHA T.
V VCHAT,.U COH ATVCOH AT.Z I Z2.Z3.Z I DOT,.Z2DOT. Z3DOT.S l.S2.S3

C
C PROGRAM VARIABLES
C

REAL MM(3.3),MMINV(3,3),F(3),OUT(3)
REAL DELT
REAL PIE
REAL SGN
REAL VECI(18),VEC2(18)
REAL DRAGDX,DRAGXDX,UCF
REAL TIME,ARGI,ARG2,TALPHA
INTEGER IITER,ISCREEN,K,IOUT

C
C YAW HYDRODYNAMIC COEFFICIENTS
C

PARAMETER(NR= - 1.640E-2, NRDOT=-3.400E-3, NV= -7.420E-3,
& NVDOT= 1.240E-3, NDBR= 1.290E-2, NDSR= -1.290E-2,
& CDY= 3.500E-1)

C
C SWAY H-YDRODYNAMIC COEFFICIENTS
C

PARAMETER(YR= 2.970E-2, YRDOT= 1.240E-3, YV= -9.310E-2,
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& YVDOT=-5.550E-2, YDBR= 2.730E-2, YDSR= 2.730E-2)
C
C SI:RGE HYDRODYNAMIC COEFFICIENTS
C

PARAMETER(UMAX= 0 .0 XU'DOT= -7.580E-3, X\R= I 8)OE--,
& XRR- 4.010E-3, XRDBR= 8.180E-4, XRDSR=-8.180E-4,
& XVV= 5.290E-2, X\DBR= 1.730E-3. XVDSR= 1.730E-3,
& XDBRDBR=-I.(10E-2, XDSRDSR=-I.OIOE-2)

C
C SLIDING MODE CONTROL VARIABLES

PARAMETER(S 11= 1.00000,S12= 0.00000.S13= 0.0()200,S14=0.03()30,
& S21= 0.00000,S22= 1.00000,S23= 1.24230,S24=0.09200.
& KI 1= -0.0207,K12= -7.147),K13= -3.8547.K 14= 0.0000.
& K15= -4.4499,K16=- 12.0714,
& K21= 1.5414,K22= 17.3469,K23 = 3.2066.K24= 0.0000,
& K25= -4.0361,K26= 13.6038)

C
( RLDDER CHARACTERISTICS
(

PA RAMETER(DMAX=0.4)
C,
C \ EHICLE CHARACTERISTICS
C

PARAMETER(WT=12000., L=17.425, XG-=0.0, YG-=0.0, IZ=I0000.,
& RHO=I.9,40, G=32.2, NU=8.47E-4)

C NA\IGATOR VARIABLES
(.

PA RAMETER(TARGET=121.975)
(

C OBSERVER VARIABLES
C

PARAMETER(AI1=-().042174797. A12=-0.351578237,
& A 21 = -0.002794897, A22=-0.098415870,
& B 1I= 0.012974539, B12= 0.011513052,
& B21= 0.004421618, B22=-0.004244119,
& SI= -1.0, S2= -1.1,
& $3= - 1.2)

C
C PROGRAM VARIABLES
C

PA RAMETER(PIE=3.141 593,DELT=0.01,ITER=50000)
C
C DEFINE LENGTH X AND HEIGHT TERMS FOR THE INTEGRATION
C

X( I)=- 105.9/12.
X(2)=- 104.3,'12.
X(1)=-9Q 312.

X(4)=-94.3 12.
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x (5)= - T. 12.

X(0)=- 70.8'12.

X(7)=-6o.3, 12.
X(8)=-55.8; 12.

X()=72.7 12.
X( 10)=79.2., 12.
X(I 1)=83.2, 12.
X(12)=87.2; 12.
X(13)=9)1.2'12.

X(14)=95.2 12.

X( 15)=9 .2 /12.
X 1 I)=101.2. 12.

X(17)=102.1 12.

X(l8)=103.2 12.
H(l )=0.0/ 12.

H(2)=2.28/12.
H(3)=8.24/12.
H(4)=13.96/12.
H(5)=19.76/12.
H(6)=25.1O/ 12.
H(7)=29.36/ 12.
H(S1=31.85/12.
H(9 )=31.85/12.
H(10)=30.00/12.
HO1 1)=27.84/12.
H(12)=25.12/ 12.
H(13)=21.44/12.
H(14)=17.12/12.
H( 15)=12.00/ 12.
H(16)=9.12/ 12.
H(I 7)=6.72/12.
H(18)=0.00/ 12.

C

C DATA ENTRY
C

WRITE(*,*)
10 WRITE(',*) 'ENTER ORDERED SPEED IN FT/SEC, UD ='

READ(-,-) UD
IF (UD .LT. 0.0 .OR. UD .GT. UMAX) THEN

WRITE(',*)
WRITE(*,*)' UD MUST BE: 0.0 <= UD <= 6.0'
WRITE(',')' RE-ENTER REALISTIC SPEED...'
WRITE(',*)
GO TO 10

ENDIF
WRITE(',*)
WRITE(',-) 'ENTER GLOBAL CURRENTS, UCO,VCO = T
READ(-,-) UCO,VCO
OPEN(U NIT= 19,FI LE='CTECU RR.DAT',STATUS='NEW')
WRITE(19,25) UCO,VCO
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25 FORMAT(F6.3,1X,F6.3)
CLOSE(U N1l=19)
WRITE(,-)

30 WRITE(',-) 'ENTER CONTROLLER SI =

READ(',-) Sj
WRITE(',-)

40 WRITE(',-) 'ENTER CONTROL TER EITA =

READ(',') EITA
IF (EIATA .LE. 0.0) THEN

WRITE(', ')
WRITE(*,*) 'EITA MUST BE: EITA > 0.0'
WRITE(*, *) 'RE- ENTER REALISTIC EITA'
WRITE(*,*)
GO TO 40

ENDIF
WRITE(*,*)
WRITE(*,*) 'INITIAL HEADING IS 000 DEGREES (DUE NORTH)'
WRITE(*,*) 'INITIAL POSITION IS (0.0,0.0)'
WRITE(*,*) 'ENTER FIRST WAY-POINT: X,Y =?'
READ(*,*) XD,YD

C
C SET INITIAL STARTING POSITION
C

X Dl=0.0
YDI=0.0
XD2=XD
YD2= i'D
OPEN(U NIT=20,FI LE='CTEWAYPT.DAT',STATUS='NEW')
WRITE(20,*) XD1,YD1
WRITE(20,*) XD2,YD2

C
C CALCULATE THE MASS
C

M=WFr/G
C
C SET INITIAL VALUES
C

ALPHA=ATAN2((YD2- -YDI ),(XD2- XD1))
U C=U CO*COS(A LPHA)+VCO*SIN(ALPHA)
VC=VCO*COS(A LPHA) -UCO-SIN(ALPHA)

U=UD
N=UD/0.012
DBR=0.0
DSR=0.0
v=0.0
R =0.0
PSI=0.0
x P05=0.0
YPOS=0.0
XCURR=XPOS
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YCU RR=YPOS
XCTE=0.0
YCTE=0.0

p TIME=0.0
VHAT=0.0
U CHAT=0.O
VCI-AT=O.O
UCOHAT=0.0
VCOHAT=0.0
Z1=o.0
Z2=0.0
Z3=0.0
ZI DOT=0.O
Z2DOT=0 .0
Z3DOT=0.0

C
C CALCULATE THE MASS MATRIX
C

MM(1,1)=(M -0.5- RHO' L*L*-LXUDOT)
MM(1,2)=0.O
MM(1,3)=-M*YG
MM(2,1)=O.0
MM(2,2)=(M -.0.5-RHO-L*L*L*YVDOT)
M M(2,3)=(M 'XG -0.5' RHO* L*L*L* LYRDOT)
MM(3,1)=- M*YG
MM(3,2)=(M *XG -O.5 *RHO* L* L*L* L*NVDOT)
MM(3,3)=(IZ - .5 *RHO* L* L* L-L-L* NRDOT)

C
C INVERT THE MASS MATRIX USING IMSL LIBRARY SUBROUTINE
C

CALL LIN RG(3,M M,3,M MINV,3)
C
C INITIALIZE THE COUNTERS
C

ISCREEN=1
INAV=0
IWAY=1
IOUT=l

C
C OPEN OUTPUT FILES
C

OPEN (U NIT= 18, FlLE='CTEA LLOU T.DAT',STATUS='NEW')
WRITE(18,*) TIME,XPOS,YPOS,PSI,DBR,DSR,UD,U,V,VHAT,R,UC,UCHAT,

& VC,VCHAT
C
C SIMULATION BEGINS
C

DO 1000 I=1,ITER
C
C CALCULATE THE DRAG FORCES
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C
DO 50 K=1,18

UCF=(V+R*X(K))
SGN=1.0
IF (UCF .LT. 0.0) SGN=-1.0
VECI (K)=H( K) U CF U CF*SGN
VEC2( K)=H( K)* UCF*U CF*SGN*X( K)

50 CONTINUE
CALL TRAP(18,VEC1,X,DRAGDX)
CALL TRAP(18,VEC2,X,DRAGXDX)

C
C RHS OF SURGE EQUATION
C

SIGN U=1.0
IF ((U .LT. 0.0) .AND. (N .GT. 0.0) )SIGNU=-1.0
IF ( (U .GT. 0.0) .AND. (N .LT. 0.0) )SIGNU=- 1.0
RE=U*L/NU
CDO=0.00385 + 1 .296E- 17*(RE- 1.2E7)*(RE- 1.2E7)
F(1)=0.5*RHO*L*L*U*V*(XVDBR*DBR + XVDSR*DSR)

& +0.5*RHO*L*L*L*U*R*(XRDBR*DBR + XRDSR*DSR)
& + 0.5*RHO*L*L*XVV*V*V
& + (M*XG + 0.5*RHO*L*L*L*L*XRR)*R*R
& + (M + 0.5*RHO*L*L*L*XVR)*V*R
& + 0.5*RHO*L*L*U*U*(XDBRDBR*DBR*DBR + XDSRDSR*DSR*DSR)
& +0.5 *RHO* L*L*CDO*(SIG NU *0.012*0.012 *N *N - U*U)

C
C RHS OF SWAY EQUATION
C

F(2)=0.5*RHO*L*L*YV*U*V
& + (0.5*RHO*L*L*L*YR - M)*U*R
& M*YG*R*R
& + 0.5*RHO*L*L*U*U*(YDBR*DBR + YDSR*DSR)
& - 0.5*RHO*CDY*DRAGDX

C
C RHS OF YAW EQUATION
C

F(3)=0.5* RHOL*L*L*NV*U *V
& + (0.5*RHO*L*L*L*L*NR*U - M*XG*U)*R
& - M*YG*V*R
& + 0.5*RHO*L*L*L*U*U*(NDBR*DBR + NDSR*DSR)
& - 0.5*RHO*CDY*DRAGXDX

C
C DEFINITION
C

PSIDOT=R
C
C MULTIPLY INVERTED MASS MATRIX AND F VECTOR
C

CALL MURRV(3,3,MMINV,3,3,F,1,3,OUT)
UDOT=OUT(1)
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VDOT=OUT(2)
RDOT=OUT(3)
XDOT=UCO+U *COS(PSI)- V*SIN(PSI)
YDOT=VCO+U *SIN(PSI)+V *COS(PSI)

C FIRST ORDER INTEGRATION
C

U=U + DELT*UDOT
V=V + DELT*VDOT
R=R + DELT*RDOT
PSI=PSI + DELT*PSIDOT

C
C MAKE PSI TO BE: -180 < PSI <= 180 DEGREES
C

IF (PSI .GT. PIE) THEN
PSI=PSI - 2.O*PIE

ELSEIF (PSI .LE. -PIE) THEN
PSI=PSI + 2.0*PIE

ENDIF
XPOS=XPOS+DELT *XDOT
YPOS=YPOS+DELT *YDOT

C
C CHECK IF TIME FOR NAV UPDATE
C

INAV=INAV+l
IF (INAV .NE. 1) GO TO 80
INAV=0
XCURR=XPOS
YCURR=YPOS
DAWAY=SQRT((XCURR-XD)**2 + (YCURR-YD)**2)

C
C CHECK DISTANCE TO WAY-POINT
C

IF (DAWAY .LT. TARGET) THEN
C
C MISS DISTANCE TO SCREEN, ENTER NEW WAY-POINT,
C CALCULATE NEW ALPHA,UCHAT,VCHAT,XCTE,YCTE,Z2,Z3

* C
WRITE(*,*)
WRITE(*,60) IWAY

60 FORMAT(' WAY- POINT #',11,' REACHED.')
WRITE(*,65) DAWAY

65 FORMAT(' DAWAY =',F8.3,' FEET')
UCOHAT=UCHAT*COS(ALPHA) -VCHAT*SIN(ALPHA)

V COHAT=VCHAT *COS(A LPHA)+U CHAT *SI N(A LPH A)
IWAY=IWAY+1
WRITE(*,70) IWAY

70 FORMAT(' ENTER WAY-POINT #' ,Ii,': X ,Y =?')
READ(*,*) XD,YD
XD1=XD2
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YD1=YD2
XD2=XD
Y D= Y D
WRITE(20,*) XD2,YD2
ALPHA=ATAN2((YD2 -YD1),(XD2- XD1))
UC=UCO*COS(A LPHA)±VCO*SI N(ALPHA)
VC=VCO*C( kLPHA)-UCO*SIN(ALPHA)
UCHAT=UCOHAT*COS(ALPHA)+VCOHAT*SIN(ALPHA)
VCHAT=VCOHAT*COS(ALPHA)- UCOHAT*SI N(ALPHA)
XCTE=(YCU RR -YD1 )*SIN(ALPHA)

& +(XCURR-XD1)*COS(ALPHA)
YCTE=(YCU RR -YD 1)*C0(ALPHA)

& -(XCURR-XD1)*SIN(ALPHA)
Z2=VCHAT+S2*YCTE
Z3=UCHAT+S3*XCTE+U *COS(PSI - ALPHA)

ENDIF
C
C CALCULATE NEW XCTE,YCTE DUE TO CHANGE OF XD,YD AND/OR
C XCURR,YCURR
C
80 XCTE=(YCURR -YD1)*SIN(ALPHA)+(XCURR- XDI)*COS(ALPHA)

YCTE=(YCURR -YD1)*COS(ALPHA)- (XCU RR -XD1)*SIN(ALPHA)

C OBSERVERS FOR SWAY VELOCITY AND CURRENT VELOCITIES

L12=(A]I *U-S1)/(A21*U)
L23=-S2
Z1DOT=Sl*ZI + (A12*U-L12*A22VU+Sl*Ll2)*R

& + (B11-B21*L12)*U*U*DBR + (Bl2-B22*LI2)*U*U*DSR
Z2DOT=S2*ZI + S2*Z2 - L23*U *SIN(PSI -ALPHA) + S2*Ll2*R

& + S2*L23*YCTE
Z3DOT=S3*Z3 - S3*S3*XCTE

C
C FIRST ORDER INTEGRATION
C

Z1=Z1+DELT*ZlDOT
Z2=Z2+DELT *Z2DOT
Z3=Z3+DELT*Z3DOT

C
C FINAL OBSERVER EQUATIONS
C

VHAT=L12*R + ZI
VCHAT=L23*YCTE + Z2
UCHAT=Z3 - S3*XCTE - U*COS(PSI -ALPHA)

C END OBSERVERS

C
C CALCULATE THE CONTROL LAWS
C
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IF (VC/U .GT. 1.0) THEN
AR GI= 1.0

ELSEIF (VC/U .LT. -1.0) THEN
0 ARG1=- 1.0

ELSE
ARGI=VC/U

ENDIF
IF ((PSI .GE. 0.0 .AND. PSI .LE. PIE) .AND.

& (ALPHA .GE. -PIE .AND. ALPHA .LE. PSI-PIE)) THEN
TALPHA=ALPHA + 2.0*PIE
ARG2=PSI-TALPHA

ELSEIF ((PSI .GE. - PIE .AND. PSI .LT. 0.0) .AND.
& (ALPHA .GT. PSI+PIE .AND. ALPHA .LE. PIE)) THEN

TALPHA=ALPHA - 2.0*PIE
ARG2=PSI-TALPHA

ELSE
TALPHA=ALPHA
ARG2=PSI -TALPHA

ENDIF
SS1=Sll1*VHAT+iS12*R+4S3*ARG2+S4YCTE+

& ((SI/EITA)*((K13*K26- K16*K23)/(K15*K26- K16*K25))+S13)*
& ASTN(ARG1)

SS2=S21 *VHAT+S22* R+S23*ARG2+S24*YCTE+
& ((SI/EITA)*((K15*K23- K13*K25)/(K15*K26- K16*K25))+S23)*
& ASIN(ARG1)

SS3=U -UD
IF (ABS(SS1) .LT. SI) SAT1=SSI/SI
IF (SSl .LE. -SI) SATI=- 1.0
IF (SSI .GE. SI) SATI=1.0
IF (ABS(SS2) .LT. SI) SAT2=SS2/SI
IF (SS2 .LE. -SI) SAT2=-1.0
IF (SS2 GE. SI) SAT2=1.0
IF (ABS(SS3) .LT. SI) SAT3=SS3/SI
IF (SS3 .LE. -1.0) SAT3= -1.0
IF (SS3 .GE. 1.0) SAT3=I.0
DBR=KlI*VHAT + K12*R + K13*ARG2 + K14*YCTE

& + EITA*K15*SATI + EITA*K16*SAT2
DSR=K21*VHAT + K22*R + K23*ARG2 + K24*YCTE

& + EITA*K25*SAT1 + EITA*K26*SAT2
N=-1153.9*SAT3 + 83.33*U

C
C CHECK FOR SATURATION
C

IF (DBR .GT. DMAX) DBR=DMAX
IF (DBR .LT. -DMAX) DBR=-DMAX
IF (DSR .GT. DMAX) DSR=DMAX
IF (DSR .LT. -DMAX) DSR=-DMAX
IF (N .GE. 500.0) N=500.0
[F (N .LE. -500.0) N=-500.0

C
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C OUTPUT
C

IF (PSI .LT. 0.0 .AND. PSI .GT. -PIE) THEN
PSIX=(PSI+2.0*PIE)* 180.0/PIE

ELSE
PSIX=PSI*180.0/PIE

ENDIF
IF (ISCREEN .EQ. 200) THEN

TIME=I/100.
WRITE(*,90) TIME,PSIX,XPOS,YPOS

90 FORMAT(' TIME= ',F7.2,2X,'PSI= ',F9.4,2X,
& 'XPOS= ',F8.2,2X,'YPOS= ',F8.2)

ISCREEN=0
ENDIF
IF (TOUT .EQ. 20) THEN

TIM E=I/ 100.
WRITE(18,*) TIME,XPOS,YPOS,PSIX,DBR,DSR,UD,U,

& V,VHAT,R,UC,UCHAT,VC,VCHAT
IOUT=0

ENDIF
ISCREEN=ISCREEN+l
IOUT=IOUT+l

1000 CONTINUE
CLOSE(UNIT=18)
CLOSE(U NIT=20)
STOP
END

C
C NUMERICAL INTEGRATION ROUTINE USING THE TRAPEZOIDAL RULE
C

SUBROUTINE TRAP(N,A,B,OUT)
INTEGER N,N1,I
REAL A(N),B(N),OUT,OUT1
Nl=N-1
OUT=0.O
DO 10 I=1,N1

OUTI = 0.5*(A(I) + A(1+1)) *(B(1+1) - B(I))
OUT = OUT + OUTI

10 CONTINUE
RETURN
END
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